NGH

Prepared for Squadron Energy

Bird and Bat Monitoring 2022-23 Biennial Report

Boco Rock Wind Farm

Southern Tablelands, NSW

August 2024

Project Number: 230699

Document verification

Project Title:	Boco Rock Wind Farm
Project Number:	230699
Project File Name:	Monitoring 2022-2023 Biennial Report Final v1.1 20240812

Revision	Date	Prepared by	Approved by
Final V1.1	12/08/2024	Bianca Heinze (minor edits)	Bianca Heinze
Final V1.0	25/07/2024	Stella O'Dwyer Bianca Heinze	Deb Frazer (nominated expert)
Draft V1.0	2/07/2024	Stella O'Dwyer	Bianca Heinze

NGH Pty Ltd prints all documents on environmentally sustainable paper including paper made from bagasse (a by-product of sugar production) or recycled paper.

Table of Contents

Exec	utive su	mmaryiv					
1.	Introdu	ction1					
1.1.		Background1					
1.2.		Objectives of the Biennial Report1					
1.3.		Structure of the Biennial Report1					
2.	Carcass	s searches2					
2.1.		Survey method & effort2					
	2.1.1.	Limitations2					
2.2.		Survey results					
	2.2.1.	Birds					
	2.2.2.	Bats4					
	2.2.3.	Location and status of finds5					
2.3.		Analysis: mortality estimates5					
	2.3.1.	Anomalies					
3.	Bird Uti	lisation Surveys6					
3.1.		Survey method & effort					
	3.1.1.	Limitations on statistical analysis7					
3.2.		Survey results					
	3.2.1.	Species richness					
	3.2.2.	Species abundance & diversity9					
	3.2.3.	Trend modelling12					
	3.2.4.	Control-impact comparisons12					
	3.2.5.	Threatened species12					
4.	Microba	at surveys14					
4.1.		Survey method & effort14					
	4.1.1.	Limitations					
4.2.		Survey results					
	4.2.1.	Threatened species					
5.	Inciden	tal observations					
5.1.		Raptors17					
5.2.		Waterbirds					

Boco Rock Wind Farm

NGH

6.	Conclusion	20
7.	References	21
Appe	ndix A Results: Mortality Surveys	A-I
Appe	ndix B Results: Bird Surveys	B-I
Appe	endix C Accompanying reports	C-I
Арре	ndix D Maps	D-I

Table

Table 2-1 Monthly distribution of carcasses/feather scatters found at BRWF (January 2022 – October 2023) 3
Table 2-2 Species and number of carcasses found during mortality surveys at BRWF (January2022 – October 2023)4
Table 2-3 Summary of mortality survey results by date for BRWF (January 2022 – October 2023) 5
Table 2-4 Annual mortality estimates for birds and bats at BRWF 2015 - October 2023 (* indicatesanalysis for 10-month period only)5
Table 3-1 Number of Surveys per stratification layer each month and in total at BRWF (January2022 – April 2023)
Table 3-2 Species richness each year of BUS monitoring (January 2015 - October 2023)
Table 3-3 Species abundance each year of BUS monitoring (January 2015 - October 2023)9
Table 3-4 Species richness by each year of monitoring (2015-2023) for each stratum
Table 3-5 Threatened species recorded during BUS surveys at BRWF (January – October 2023)13
Table 4-1 Anabat sites used for each quarterly survey at BRWF (2015 to date)
Table 4-2 Microbat (Anabat) survey effort at BRWF (January 2022 – October 2023)
Table 4-3 Results of Anabat analysis with selected species, all quarters combined (January 2022 –October 2023)(all sites)
Table 5-1 Raptor species recorded at BRWF (January 2022 – October 2023) Table 5-2 Summary of number of raptors recorded in January 2022 - October 202317
Table 5-3 Wetland species, survey type and count for all wetland species recorded at BRWFduring the reporting period (January 2022 – October 2023)18

Acronyms and Abbreviations

AWS	Automatic weather station
BBMP	Bird and Bat Management Plan
BC Act	Biodiversity Conservation Act 2016 (NSW)
ВОМ	Australian Bureau of Meteorology
BRWF	Boco Rock Wind Farm
CE	Critically endangered
Cth	Commonwealth
E	Endangered
EEC	Endangered ecological community – as defined under relevant law applying to the proposal
EPBC Act	Environment Protection and Biodiversity Conservation Act 1999 (Cwth)
GIS	Geographic information system
ha	hectares
HD	high detection
km	kilometres
LGA	Local government area
m	metres
TEC	Threatened ecological community

Executive summary

The Boco Rock Wind Farm (BRWF) is located on the Southern Tablelands of New South Wales (NSW), approximately 10 km south-west of the town of Nimmitabel. There are 67 operational turbines. Implementation of an adaptive Bird and Bat Management Plan (BBMP) forms part of the conditions of project approval.

As outlined in BBAMP V2.0 (NGH 2023), this Biennial Report is for the 2022-2023 survey period. Note a new monitoring method was begun in November 2023 in line with BBAMP V2.0. The results from the new methods are to be reported separately. This Biennial Report is supplementary to the *Summary Results Report 2015-2023* which was prepared in October 2023 to accompany the application to update the plan (BBAMP V2.0). This report has the complete set of results for the 2022-2023 reporting period for surveys undertaken under BBMP V1.3, which span January 2022 to October 2023.

Mortality surveys in between January 2022 – October 2023 resulted in 12 carcass/feather scatter finds. There were nine bird carcasses/feather scatters: two in 2022 and seven in 2023 from common and secure species including Eurasian Skylark (introduced), Australian Magpie and Nankeen Kestrel. Four carcasses of White-striped Freetail Bat were found: two in 2022 and two in 2023. No threatened species or waterbird carcasses were found.

The annual mortality estimate for bats is 15 in 2022 and 15 in 2023 (median). The annual mortality estimate for birds is 21 in 2022 and 55 in 2023 (median). These estimates are within the range previously calculated for Boco Rock WF, noting that the period for 2023 was 10 months rather than the usual 12 months.

A total of 215 bird utilisation surveys (BUS) were undertaken in January 2022 – October 2023 with an average survey coverage on 98%; well above the required 80% for robust statistical analysis. Species richness at BRWF in 2022 was 81 (the 2nd highest yet recorded) and 66 in 2023. Species abundance was 793 (2022) and 636 (2023); within the range of previous results.

As with previous years, results from Anabat data do not reflect bat mortalities, i.e. the most frequently recorded microbats by Anabat ('other' species such as *Vespadelus* spp.) do not correlate with frequently found microbat carcasses (White-striped Freetail Bat). Of particular note, Large Bent-winged Bat continues to be recorded utilising the site but is not found during carcass searches.

In conclusion, results from mortality, bird and anabat monitoring were broadly consistent with expectations given results of previous years and continue to support the conclusions of *Summary Results Report 2015-2023*, including that Boco Rock WF does not pose a significant threat to local bird and bat populations.

NGH

1. Introduction

1.1. Background

The Boco Rock Wind Farm (BRWF) is located on the Southern Tablelands of New South Wales (NSW), approximately 10 km south-west of the town of Nimmitabel. BRWF Stage 1 commenced operation in December 2014. Conditions of project approval by NSW Department of Planning (now Department of Planning& Environment, DPE) included an ongoing monitoring and management program to evaluate the operational impact of the wind farm to bird and bat species; an adaptive Bird and Bat Management Plan. Version 1 of the plan became operational in 2015 (BBMP V1.3); an updated plan (BBAMP V2.0) became operational in November 2023.

As outlined in BBAMP V2.0 (NGH 2023), this Biennial Report is for the 2022-2023 survey period. Note a new monitoring method was begun in November 2023 in line with BBAMP V2.0. The results from the new methods are to be reported separately.

1.2. Objectives of the Biennial Report

This Biennial Report is supplementary to the *Summary Results Report 2015-2023* which was prepared in October 2023 to accompany the application to update the plan (BBAMP V2.0). This report has the complete set of results for the 2022-2023 reporting period for surveys undertaken under BBMP V1.3, which span January 2022 to October 2023.

The reporting requirements to be met herein are detailed in the BBMP V1.3. In summary, annual reports are to:

- Summarise the results of monitoring (January 2022 October 2023).
- Provide quantitative of mortality and bird surveys including an annual mortality estimate.

This report will not identify trends, highlight species at risk and provide recommendations as these matters were addressed in the *Summary Results Report 2015-2023*. The outcome of that report was the updated BBAMP V2.0.

1.3. Structure of the Biennial Report

Each section of the report outlines the survey method, effort and results of a monitoring method. Details and raw results are provided in appendices. Results from the interim November 2023 – April 2024 period are reported in Appendix C.4.

2. Carcass searches

2.1. Survey method & effort

Carcass searches during January 2022 – October 2023 were conducted in accordance with the BBMP V1.3. Mortality surveys were completed monthly within two different search areas:

- 1. High detectability zone at all 67 turbines every month (pulsed), and
- 2. Extended zone at 20 turbines per month

The carcass searches included 1608 high detectability searches & 240 extended zone searches each year: 1872 from January to December 2022, 1560 from January to October 2023. Data from the carcass searches were analysed and reported on by Symbolix (see Appendix C). Refer to Section 6.1 of BBMP V1.3 (NGH 2017) for detailed carcass search methodologies.

2.1.1. Limitations

Quarter 1 of the 2022 period recorded higher rainfall and warm weather, leading to prolific vegetation growth on site. This was notable in the extended zones, making carcass searches throughout 2022 difficult due to limited visibility. In March 2022 (end of 1st quarter), the hardstand areas of turbines were sprayed to remove vegetation and improve visibility for carcass detection. Thick vegetation continued to be reported as a hinderance to carcass detectability in extended zones.. The land manager was able to manage vegetation in the extended zones in late 2022 and coupled with reduced rainfall in early 2023, vegetation density was not impacting carcass detectability and search efforts in 2023.

2.2. Survey results

The detailed mortality survey results for January 2022 to October 2023 are given in Appendix A. The location of each carcass found is shown in the map in Appendix D1.1.

Summary

Mortality surveys in between January 2022 – October 2023 resulted in 12 carcass/feather scatter finds. The monthly distribution of carcass finds is shown in below (see

Boco Rock Wind Farm

Table 2-1). The highest number (2) of carcasses was found in February 2022 and March 2023 (first quarter). The total number of carcasses for the 22 month period was 12; 4 in 2022 and 8 in 2023 (to October).

No carcasses were found in 9 out of 12 months in 2022; 4 of 10 months in 2023. Locations of carcass finds are shown in Appendix A (see map in D1.2). No waterbirds or threatened species were found during mortality surveys during January 2022 – October 2023.

Boco Rock Wind Farm

Table 2-1 Monthly distribution of carcasses/feather scatters found at BRWF (January 2022 – October 2023)

Survey period	Number of carcass finds				
	2022	2023			
January	0	1			
February	2	0			
March	1	2			
April	0	0			
Мау	0	0			
June	0	1			
July	0	0			
August	0	2			
September	0	1			
October	0	1			
November	1	n/a			
December	0	n/a			
Total	4	8			

2.2.1. Birds

Across all years of monitoring (January 2015 - October 2023), the top three bird species found in mortality surveys are:

- 1. Eurasian Skylark (15 or 22% of the total bird finds)
- 2. Australian Magpie (10 or 14% total bird finds)
- 3. Nankeen Kestrel (8 or 11% total bird finds)

All three are common, secure species. The data from this reporting period is consistent with results of previous years; bird carcasses were found from six species including: Eurasian Skylark (2), Common Starling (2), Raven sp (1), Australian Magpie (1), Nankeen Kestrel (1) and Stubble Quail (1).

Table 2-2 shows the species identified from carcasses/feather scatters along with the number. There were a total of eight bird carcasses/feather scatters: two in 2022 and six in 2023.

Boco Rock Wind Farm

2.2.2. Bats

Across all years of monitoring (2015-October 2023), most carcasses found have been from two bat species:

- 1. White-striped Freetail Bat (60 or 73% of the total bat finds January 2015 to October 2023)
- 2. Gould's Wattled Bat (15 or 18% total bat finds)

Between January 2022 and October 2023, there were four bat carcasses found from one species: White-striped Freetail Bat.

Both are common, secure species. The data from the current reporting period is in keeping with previous years. Between January 2022 and October 2023, there were four bat carcasses found from one species: White-striped Freetail Bat.

Table 2-2 shows that two bat carcasses were found in 2022 and in 2023.

Table 2-2 Species and number of carcasses found during mortality surveys at BRWF (January 2022 – October 2023)

Common name	Species name	No. found 2022	No. found 2023	Species at risk of turbine collision?
	Birds			
Australian Magpie	Cracticus tibicen		1	No
Common Starling	Sturnus vulgaris	1	1	No
Eurasian Skylark	Alauda arvensis	1	1	No
Nankeen Kestrel	Falco cenchroides		1	Yes
Raven sp.			1	No
Stubble Quail	Coturnix pectoralis		1	No
Total birds		2	6	
	Bats			
White-striped Freetail Bat	Austronomus australis	2	2	Yes
Total bats		2	2	

Boco Rock Wind Farm

2.2.3. Location and status of finds

Table 2-3 summarises the carcass search results. It can be seen from Table 2-3 that the majority of carcasses were found in the high detectability (core) zone; only one carcass was located in the extended zone in September 2023. No threatened species were detected during the carcass searches between January 2022 and October 2023.

Turbine ID	Date	Common name	Threatened (Yes/No)	Found during monthly survey?	Survey zone
54	13/02/2022	White-striped Freetail Bat	No	Yes	Core
59	13/02/2022	White-striped Freetail Bat	No	Yes	Core
5	4/03/2022	Common Starling	No	Yes	Core
17	27/11/2022	Eurasian Skylark	No	Yes	Core
62	15/01/2023	Nankeen Kestrel	No	Yes	Core
59	12/03/2023	White-striped Freetail Bat	No	Yes	Core
58	12/03/2023	White-striped Freetail Bat	No	Yes	Core
50	26/06/2023	Stubble Quail	No	Yes	Core
51	25/08/2023	Australian Magpie	No	Yes	Core
5	25/08/2023	Common Starling	No	Yes	Core
1	28/09/2023	Eurasian Skylark	No	Yes	Ext.
1	25/10/2023	Raven sp.	No	Yes	Core

Table 2-3 Summary of mortality survey results by date for BRWF (January 2022 – October 2023)

2.3. Analysis: mortality estimates

As per previous years, an estimate of overall annual mortality was derived by a Monte-Carlo simulation model (Hull and Muir 2010 in Symbolix 2024) by Symbolix for each year of monitoring and is presented in Table 2-4. The data for this reporting period has been analysed in two separate reports (refer to Appendix C for both statistical mortality reports).

Table 2-4 Annual mortality estimates for birds and bats at BRWF 2015 - October 2023 (* indicates analysis for 10-month period only)

Carcass type	2015	2016	2017	2018	2019	2020	2021	2022	Oct 2023*
Bat	160	138	129	63	27	8	55	15	15
Bird	115	88	131	118	76	151	40	21	55

Boco Rock Wind Farm

The cumulative Y1-9 estimate (January 2015 to October 2023) analysed for both bats and birds. Over this time period, a total of 74 bats were found. The resulting (median) estimate of total mortality is 465 bat individuals lost over the nine years. Over this time period, a total of 63 birds were found. The resulting (median) estimate of total mortality is 395 individuals lost over the nine years.

2.3.1. Anomalies

The period for 2023 was 10 months rather than the usual 12 months; mortality monitoring was undertaken in the other two months under BBAMP V2.0 but this will be reported on separately. The median mortality estimate results (15; 15) for bats are within the range previously found (8-160) and no anomalies have been detected. The 2023 median mortality estimate for birds (55) are within the existing range (40-151). The 2022 median mortality estimate for birds (21) is lower than the range; this may be because fewer birds were lost or because detectability was lower than expected during some of the time (refer to Section 2.1.1).

3. Bird Utilisation Surveys

3.1. Survey method & effort

The Bird Utilisations Surveys (BUS) completed from January 2022 till October 2023 were in accordance with BBMP V1.3 (2017). BUS surveys are completed monthly. Each month, ten locations are selected for survey (120 bird utilisation surveys during a 12-month reporting period).

There are three stratification layers in the design: grassland/pasture impact sites ('grassland' sites, grassland/pasture control sites ('control' sites) and woodland sites. The three stratification layers are independent of each other. The strata are defined as follows:

- Grassland impact: grassland/pasture habitat within 500 m radius of a turbine
- Grassland control: grassland/pasture habitat greater than 500 m from a turbine
- Woodland: woodland habitat where it is available to survey; sites are generally between 500 m and two kilometres from a turbine, with the closest being around 300 m (these are along woodland edges) and the furthest site 2.7 km distant. There are no woodland control sites

Although attempts have been made to sample similar habitat in the grassland impact and grassland control sites, there are notable differences in the bird habitat available at the two. The majority of the grassland impact sites are heavily cleared pasture areas while the control sites are more diverse grassland within patchy mosaics of scattered trees or woodland. Also, many grassland impact sites are at the highest points in the landscape and are barren and exposed. Control sites occupy a range of landscape positions and generally include more shelter. These differences reflect the selection of high elevations and more open sites for turbine placement (and therefore impact sites) compared to the random selection of control sites.

Boco Rock Wind Farm

3.1.1. Limitations on statistical analysis

Aspects of survey roll-out place some limitations of analysis and use of data. Some of these issues have been discussed previously (e.g. 2016 Annual Report, NGH 2017c) and will continue to be a caveat on interpretation of results throughout the program.

In 2015 at commencement of monitoring, all bird utilisation survey sites were randomly generated using a GIS system and then located in the field. This resulted in some sites which were difficult to access, and some grassland control sites where the habitat was more of a woodland matrix than grassland. These sites were dropped (e.g. due to access issues) or moved (i.e. to better represent the target habitat stratum) in 2016. The legacy of this change is an apparent marked decline in species richness of control sites from 2015 to 2016, reflecting the move from heterogeneous treed habitat to the homogeneous grassland habitat that occurs in the grassland impact site. When this is accounted for in analysis, there is no obvious change in species mix at control sites across the years.

In 2016, in an attempt to even up total sites surveyed in each strata for the year, grassland impact site surveys were not undertaken in October and November. This skews the grassland fourth quarter (October, November, December) species richness counts for that year, showing an apparently much lower species richness in the fourth quarter of 2016 than 2015 and 2017.

In 2021, wet weather reduced survey coverage such that 14 BUS (out of 120 planned surveys) were not able to be completed due to adverse weather, which impacted December surveys in particular; missing two entire strata for that month (grassland impact and woodland). This has shown as a slight decline in species richness in the two impact zones compared to the control.

These limitations do not affect the ability of the data to be analysed to meet the objectives of the program and were accounted for during statistical analysis by Symbolix Pty Ltd.

3.2. Survey results

Table 3-1 shows the number of surveys per stratum at BRWF from January 2022 to October 2023. A total of 215 bird utilisation surveys were undertaken with 73 sites in grassland control, 73 in grassland impact and 69 in woodland. The 2022 BUS survey effort (January – December 2022) achieved 97% survey coverage overall (116 from 120 survey sites), while the 2023 survey effort (January – October 2023) achieved 99% coverage (99 from 100 survey sites). This is a combined average survey coverage of 98% (215 from 220 survey sites). Refer to maps in Appendix D1.3 for bird utilisation survey locations.

Table 3-1 Number of Surveys per stratification layer each month and in total at BRWF (January 2022 – April 2023)

Survey Period	Grassland Control	Grassland Impact	Woodland	Total		
2022						
January	4	3	3	10		
February	4	3	3	10		
March	3	4	3	10		

Boco Rock Wind Farm

Survey Period	Grassland Control	Grassland Impact	Woodland	Total
1 st quarter totals	11	10	9	30
April	3	1	3	7
Мау	3	4	3	10
June	3	3	3	9
2 nd quarter totals	9	8	9	26
July	3	3	4	10
August	3	4	3	10
September	3	3	4	10
3 rd quarter totals	9	10	11	30
October	4	4	2	10
November	5	5	0	10
December	3	3	4	10
4 th quarter totals	12	12	6	30
2023				
January	4	3	3	10
February	4	3	3	10
March	3	3	3	9
1 st quarter totals	11	9	9	29
April	3	3	4	10
Мау	2	4	4	10
June	3	3	4	10
2 nd quarter totals	8	10	12	30
July	4	3	3	10
August	3	4	3	10
September	3	3	4	10
3 rd quarter totals	10	10	10	30
October	3	4	3	10
4 th quarter totals	3	4	3	10
Total	73	73	69	215

3.2.1. Species richness

Species richness is the count of the number of species in an area. There were 81 species recorded in 2022 and 66 species recorded in 2023 during BUS only. Note: analysis by Symbolix uses only BUS data. This is within the range previously recorded (59-89), with 2022 the 2nd highest species richness over the nine years of monitoring.

Table 3-2 Species richness each year of BUS monitoring (January 2015 - October 2023)

Year	2015	2016	2017	2018	2019	2020	2021	2022	2023
Species richness	89	75	73	69	65	66	59	81	66

Overall richness is higher in woodland than grassland BUS sites. Woodland richness has remained fairly constant over the last five years (accounting for seasonal variation). Richness in grassland sites is also generally stable. Refer to Appendix C.2. for more statistical detail from Symbolix.

3.2.2. Species abundance & diversity

Species abundance is the number of individuals per species. Note that aural observations are given a count of one individual. Abundance in 2022 was 793 (observations) and 636 in 2023 (for 10 months) - Table 3-3. This shows a change from a downward trend over the past years of monitoring; along with more species of birds, more individual birds were recorded in 2022 and 2023.

Table 3-3 Species abundance each year of BUS monitoring (January 2015 - October 2023)

Year	2015	2016	2017	2018	2019	2020	2021	2022	2023
No. observations	1729	1283	1051	948	801	719	665	793	636

Eurasian Skylark was consistently one of the most common species observed during grassland BUS surveys between 2015-2023 along with a fairly consistent mix of Common Starling, Sulphurcrested Cockatoo, Little Raven and Australian Magpie. Species abundance in woodland was more varied over time. Auditory and visual count charts for most common species by year and strata are given in Appendix C.2.

Diversity

Due to high variation in results year to year (refer to Figure 3-1), it is difficult to identify any clear trends in Shannon diversity (Symbolix, 2024b). However, overall results indicate that diversity is fairly stable in the woodland (accounting for seasonal variation) and grassland sites.

Boco Rock Wind Farm

Species mix

The most pronounced shift in species mix over time occurs in grassland control sites between 2015 and 2017, which are already discussed occurred because of changes to control sites. Overall, species mix in grassland control and impact are variable year to year yet show a similar pattern between strata (Figure 3-2). The species mix in woodland is distinct from grassland and shows less variation year to year. In all strata, the species mix has been fairly stable (with the exception above). Most pertinently, there is no evidence of changes in the grassland stratum that aren't mirrored by changes in the control.

Figure 3-1 Distribution of Shannon diversity per survey, by site and time of year (Symbolix 2024b)

Boco Rock Wind Farm

Figure 3-2 Ordination plots grouped by season and site, with distance based upon presence/absence (Symbolix 2024b)

Boco Rock Wind Farm

NGH

3.2.3. Trend modelling

Trend modelling shows that (Symbolix, 2024b):

- Increased rainfall is associated with increased Shannon diversity.
- Shannon diversity is decreasing over time in all stratum; site type (control, impact, woodland) is not a determining factor.
- Species diversity and richness increase with distance from turbine.

3.2.4. Control-impact comparisons

Table 3-4 shows the species richness for each year of monitoring separated into strata. For 2022, species richness in the grassland control stratum was 33; the highest since 2018. In 2023, it was 19; the lowest recorded. This is likely to have been influenced by exclusion of November and December in the survey, with spring and summer typically being the busiest for birds at Boco Rock.

Species richness in the grassland impact stratum was 16 for 2022 and 19 in 2023. These are within the range of previous results (11-40). Species richness in the woodland stratum in 2022 was 62, the highest recorded since 2015 while in 2023 species richness in the woodland stratum was the lowest ever recorded on site at 50. Again this result would have been influenced by surveys concluding in October.

	2015	2016	2017	2018	2019	2020	2021	2022	2023
Grassland control	63	36	30	35	28	26	24	33	19
Grassland impact	40	29	28	21	14	19	11	16	19
Woodland	66	58	58	53	53	52	55	62	50

Table 3-4 Species richness by each year of monitoring (2015-2023) for each stratum

Analysis

Results showed a decrease in diversity and abundance not attributed to the wind farm, with factors like rainfall and distance from turbines correlating with diversity (Symbolix, 2024b). There is no evidence of an impact on bird populations caused by the operation of BRWF (Symbolix, 2024b).

3.2.5. Threatened species

During BUS surveys and opportunistically, 25 counts of seven threatened species were recorded. As for previous years, the most frequently recorded threatened species was Scarlet Robin *Petroica boodang*, with eleven records. Refer to Table 3-5 for threatened species records.

Boco Rock Wind Farm

Table 3-5	Threatened species	recorded during BUS	surveys at BRWF	(January - Octobe	r 2023)
-----------	--------------------	---------------------	-----------------	-------------------	---------

Date	Common Name	Scientific Name	Easting	Northing	NSW Listing	EPBC Listing
14/02/2022	Scarlet Robin	Petroica boodang	685063	5940153	V	
5/04/2022	Scarlet Robin	Petroica boodang	685524	5939471	V	
29/05/2022	Gang-gang Cockatoo	Callocephalon fimbriatum	685463	5939221	E	E
29/05/2022	Scarlet Robin	Petroica boodang	685463	5939221	V	
15/06/2022	Scarlet Robin	Petroica boodang	685603	5939302	V	
5/07/2022	Diamond Firetail	Stagonopleura guttata	684942	5940091	V	
5/07/2022	Scarlet Robin	Petroica boodang	684942	5940091	V	
5/07/2022	Speckled Warbler	Chthonicola sagittata	684942	5940091	V	
20/09/2022	Scarlet Robin	Petroica boodang	692299	5951227	V	
28/10/2022	Dusky Woodswallow	Artamus cyanopterus	692260	5951978	V	
9/12/2022	Brown Treecreeper	Climacteris picumnus	685969	5938280	V	V
9/12/2022	Diamond Firetail	Stagonopleura guttata	685969	5938280	V	V
9/12/2022	Dusky Woodswallow	Artamus cyanopterus	685969	5938280	V	
9/12/2022	Hooded Robin	Melanodryas cucullata	685969	5938280	E	E
9/12/2022	Scarlet Robin	Petroica boodang	684662	5938927	V	
9/12/2022	Speckled Warbler	Chthonicola sagittata	684662	5938927	V	
18/02/2023	Scarlet Robin	Petroica boodang	685524	5939471	V	
13/03/2023	Scarlet Robin	Petroica boodang	684942	5940091	V	
2/04/2023	Brown Treecreeper	Climacteris picumnus	685969	5938280	V	V
2/04/2023	Scarlet Robin	Petroica boodang	684638	5938677	V	
28/06/2023	Diamond Firetail	Stagonopleura guttata	688991	5949894	V	V
30/07/2023	Scarlet Robin	Petroica boodang	692299	5951227	V	
26/08/2023	Gang-gang	Callocephalon	684580	5939238	E	Е

Boco Rock Wind Farm

Date	Common Name	Scientific Name	Easting	Northing	NSW Listing	EPBC Listing
	Cockatoo	fimbriatum				
26/09/2023	Dusky Woodswallow	Artamus cyanopterus	685698	5939244	V	
26/09/2023	Speckled Warbler	Chthonicola sagittata	685698	5939244	V	

4. Microbat surveys

4.1. Survey method & effort

Passive overnight Anabat surveys were undertaken seven times from January 2022 to October 2023 (refer to Table 4-2 below). Four Anabat detectors were placed in the same location each survey cycle for four consecutive nights, with a focus on survey coverage of the most relevant season for microbat survey (March-May and September-November for species of interest such as the migratory Large Bent-winged Bat and White-striped Freetail Bat), as well as a winter survey. Survey locations have been selected based on the two habitat types at BRWF (woodland and grassland) and have been used for the past seven years (Table 4-1).

Anabat site	Stratification	Description	Nearest turbine
AE-1	Control	Open grassland near Avon Lake Road > 500 m from turbines	34, 35
AE-2	Impact	Open grassland between turbines 49 & 50 (< than 500 m distance from turbines)	49, 50
AE-3	Impact	Two rows of trees meeting < 500 m from turbine. No woodland occurs within 500 m of turbines, so this is the densest vegetation.	25
AE-4	Control	Woodland > 500 m from turbines	35, 37

Table 4-1 Anabat sites used for each quarterly survey at BRWF (2015 to date)

The detectors were programmed to commence operation approximately 30 minutes before dusk and to cease approximately 30 minutes after dawn. Anabat survey effort for the reporting period is shown in Table 4-2. Results were analysed by consultant bat expert Glenn Hoye of Flight by Night Bat Surveys.

Table 4-2 Microbat (Anabat) survey effort at BRWF (January 2022 – October 2023)

Reporting quarter	Date	Effort
2022		
1 st quarter	1-4 March 2022	4 units for 4 nights; 16 survey nights.

Boco Rock Wind Farm

Reporting quarter	Date	Effort
2 nd quarter	13-16 June 2022	4 units for 4 nights; 16 survey nights.
3 rd quarter	19-22 September 2022	4 units for 4 nights; 16 survey nights.
4 th quarter	8-11 December 2022	4 units for 4 nights; 16 survey nights.
2023		
1 st quarter	12-15 March 2023	4 units for 4 nights; 16 survey nights.
2 nd quarter	26-29 June 2023	3 units for 4 nights; 12 survey nights.
3 rd quarter	25-28 September 2023	4 units for 4 nights; 16 survey nights.
Total		108 survey nights

4.1.1. Limitations

A 4th quarter survey was not undertaken for 2023 due to the commencement of BBAMP V2.0 in November 2024, which does not include Anabat survey. Anabat monitoring was discontinued due to surveys showing no correlation between activity levels and carcass finds for any species (BBAMP V2.0). There were problems with recordings obtained from AE-1 during all surveys in 2022 and 2023, possibly due to the exposed survey location with wind causing interference and cattle knocking over the unit. The very low recordings obtained from this survey location (19) may therefore be a reflection of survey interference rather than a lack of bats. The unit was tested and found to be working.

4.2. Survey results

Anabat call analysis has focussed on identification of threatened microbat species or common species known to be susceptible to turbine interactions (i.e. those that have been detected during mortality surveys). As call analysis can be time consuming and costly, all other calls that are from non-threatened species and/or those that have not been detected during mortality surveys are allocated to the grouping 'other'. The total number of calls recorded each survey were analysed and allocated to the following species or grouping:

- 1. Large Bent-winged Bat *Miniopterus oceanensis oriane* (Vulnerable under NSW *Biodiversity Conservation Act 2017* (BC ACT))
- 2. Eastern False Pipistrelle Falsistrellus tasmaniensis (Vulnerable BC Act)
- 3. Yellow-bellied Sheathtail Bat Saccolaimus flaviventris (Vulnerable BC Act)
- 4. White-striped Freetail Bat Austronomus australis
- 5. Gould's Wattled Bat Chalinolobus gouldii
- 6. Other bats

For reference, a full analysis of all bat calls was completed in 2016 and showed that other bats known to occur at BRWF include those detailed below. These species still remain largely absent from mortality searches.

Boco Rock Wind Farm

NGH

- Chocolate Wattled Bat Chalinolobus morio
- Southern Freetail Bat Mormopterus planiceps
- Inland Broad-nosed Bat Scotorepens balstoni
- Large Forest Bat Vespadelus darlingtoni
- Southern Forest Bat Vespadelus regulus
- Little Forest Bat Vespadelus vulturnus

Table 4-3 Results of Anabat analysis with selected species, all quarters combined (January 2022 – October 2023)(all sites)

Species	AE1 Grassland control	AE2 Grassland Impact	AE3 Woodland impact	AE4 Woodland control	Total for spp.
2022					
White-striped Freetail Bat (<i>Austronomus australis</i>)	4	0	55	3	62
Gould's Wattled Bat (<i>Chalinolobus gouldii</i>)	6	15	744	13	778
Eastern False Pipistrelle (<i>Falsistrellus tasmaniensis</i>)	1	1	10	3	15
Large Bent-winged Bat (<i>Miniopterus orianae oceanensis</i>)	0	2	329	15	346
Other species	15	56	1448	268	1787
Total for sites	26	74	2586	302	2988
2023					
White-striped Freetail Bat (Austronomus australis)	2	31	195	4	232
Gould's Wattled Bat (<i>Chalinolobus gouldii</i>)	2	45	522	12	581
Eastern False Pipistrelle (<i>Falsistrellus tasmaniensis</i>)	0	1	14	4	19
Large Bent-winged Bat (<i>Miniopterus orianae oceanensis</i>)	0	1	457	10	468
Other species	15	49	27	1263	1354
Total for sites	19	127	1215	1293	2654

Boco Rock Wind Farm

4.2.1. Threatened species

Two threatened microbat species were recorded by Anabat at BRWF during the survey period January 2022 to October 2023 . These were;

- Large Bent-winged Bat
- Eastern False Pipistrelle

Large Bent-winged Bat has been recorded at BRWF since monitoring began in 2015. Eastern False Pipistrelle has been recorded in low numbers in 2015, 2018, 2019, 2020, 2021, 2022 and 2023. Neither of these species were detected in mortality carcass search surveys 2022 or 2023.

5. Incidental observations

5.1. Raptors

In 2022, there were 69 raptor observations; this is far greater than previous years' records which range from 23 to 59 per year. Raptor records in 2023 was within the usual range. Median annual raptor observations 2015-2023 is 40.8. Six raptor species were recorded during bird surveys or opportunistically on 89 occasions at BRWF during January 2022 – October 2023:

- 1. Australian Hobby Falco longipennis
- 2. Black-shouldered Kite Elanus axillaris
- 3. Brown Goshawk Accipiter fasciatus
- 4. Nankeen Kestrel Falco cenchroides
- 5. Swamp Harrier Circus approximans
- 6. Wedge-tailed Eagle Aquila audax

Of the raptor observations, only 26% were recorded during bird utilisation surveys; most observations were opportunistic. The most frequently recorded raptor that accounted for half of the records was Nankeen Kestrel with 27 observations in 2022 and 16 in 2023. Wedge-tailed Eagle was next most abundant with 20 recorded in 2022 and 12 in 2023. Table 5-1 summarises all raptor sightings from January 2022 to October 2023; details are given in Appendix B.

Table 5-1 Raptor species recorded at BRWF (January 2022 – October 2023)Table 5-2 Summary of number of raptors recorded in January 2022 - October 2023

Common Name	Scientific Name	No. records 2022	No. records 2023
Australian Hobby	Falco longipennis	4	2
Black-shouldered Kite	Elanus axillaris	15	3
Brown Goshawk	Accipiter fasciatus	2	
Nankeen Kestrel	Falco cenchroides	27	16
Swamp Harrier	Circus approximans	1	
Wedge-tailed Eagle	Aquila audax	20	12
Total		69	33

Boco Rock Wind Farm

NGH

5.2. Waterbirds

The BBMP V1.3 requires that the influence of the local wetlands on bird survey results is considered. There were 11 species of 'wetland' bird recorded during utilisation surveys between January 2022 till October 2023 (shown as utilisation survey type in Table 5-3 below). By far the majority (90%) of waterbird sightings at BRWF during January 2022 till October 2023 occurred opportunistically at the ephemeral wetlands surveyed (20,723 birds opportunistically compared to 140 birds during BUS). Most waterbird records come from opportunistic sightings at the wetlands.

The influence of waterbirds on BUS results is minor to moderate depending on the size of the flocks encountered. It is clear however, that the influence of waterbirds on mortality results is negligible. There has not been a waterbird carcass found at BRWF to date (2015 - 2023).

Table 5-3 Wetland species, survey type and count for all wetland species recorded at BRWF during the reporting period (January 2022 – October 2023)

Common name	Species name	Survey	Count
Australasian Grebe	Tachybaptus novaehollandiae	Utilisation	2
		Opportunistic	334
Australasian Shoveler	Anas rhynchotis	Utilisation	2
		Opportunistic	170
Australasian Swamphen	Porphyrio melanotus	Opportunistic	14
Australian Shelduck	Tadorna tadornoides	Utilisation	11
		Opportunistic	58
Australian Spotted Crake	Porzana fluminea	Opportunistic	3
Australian Wood Duck	Chenonetta jubata	Utilisation	37
		Opportunistic	279
Black Swan	Cygnus atratus	Utilisation	3
		Opportunistic	250
Black-winged Stilt	Himantopus himantopus	Opportunistic	1
Chestnut Teal	Anas castanea	Opportunistic	10
Duck spp	Duck spp.	Opportunistic	381
Eurasian Coot	Fulica atra	Utilisation	29
		Opportunistic	14113
Great Cormorant	Phalacrocorax carbo	Opportunistic	1
Grebe spp	Grebe spp.	Opportunistic	489
Grey Teal	Anas gracilis	Utilisation	4

Boco Rock Wind Farm

Common name	Species name	Survey	Count
		Opportunistic	1329
Hardhead	Aythya australis	Opportunistic	641
Hoary-headed Grebe	Poliocephalus poliocephalus	Opportunistic	746
Little Pied Cormorant	Microcarbo melanoleucos	Utilisation	7
		Opportunistic	10
Masked Lapwing	Vanellus miles	Utilisation	4
		Opportunistic	71
Pacific Black Duck	Anas superciliosa	Utilisation	34
		Opportunistic	1624
Pink-eared Duck	Malacorhynchus membranaceus	Opportunistic	2
Purple Swamp Hen	Porphyrio porphyrio	Opportunistic	55
Red-kneed Dotterel	Erythrogonys cinctus	Opportunistic	1
Unidentified Waterfowl	Unidentified waterfowl	Opportunistic	40
White-faced Egret	Egretta novaehollandiae	Utilisation	7
		Opportunistic	97
White-necked Heron	Ardea pacifica	Opportunistic	4
Total			20,863

6. Conclusion

This is the final report to be provided under BBMP V1.3 as the plan was updated in 2023. Results from November 2023, obtained using different methods from those herein, will be reported separately in 2026. This Biennial Report presents results for the period January 2022 – October 2023 and can be read in conjunction with the *Summary Results Report 2015-2023*, which discusses trends and recommendations.

After nine years of bird and bat monitoring at BRWF, the program is meeting its primary objective to detect collisions of bird and microbat species with turbines. Overall, survey effort is well above what is required for statistical analysis. The results reported herein are consistent with those of previous years: the species mix found during carcass searches were typical of those found in previous years. The threatened bird and bat species, raptors and most common bird species were also typical of those found in previous years. Results from Anabat data do not reflect bat mortalities, i.e. the most frequently recorded microbats by Anabat do not correlate with frequently found microbat carcasses. Of particular note, Large Bent-winged Bat continues to be recorded utilising the site but is not found during carcass searches.

There were a few anomalies in results:

- 2022 bird median annual mortality estimate (21) was outside the range of previous results (40-151). It was noted that detectability is likely to have affected the number of carcasses found and therefore the annual mortality estimate. This was discussed with the Operator throughout 2022; action to reduce vegetation cover was taken once landholder co-operation was gained. Although numbers were lower, the mix of species found was consistent with previous and subsequent years. For this reason, detectability is not considered a substantial limitation. Detectability trials will be run again in 2025 to reflect more recent conditions.
- Bird species richness was the lowest ever recorded in 2023 in the grassland control (19) and woodland (50) strata, likely to have been influenced by surveys concluding in October prior to the influx of seasonally migratory species during late spring and summer. In either case, changes in these strata do not reflect wind farm impacts as both are controls. The species richness in the grassland impact stratum was strong (within range) in both 2022 and 2023.
- In 2022 BUS and incidental raptor observations were much higher (69) than the previously recorded range (23-59). The mix of most commonly recorded species (Nankeen Kestrel and Wedge-tailed Eagle) was consistent with previous years.

A trend towards higher bird species richness than previous reporting years (since 2018) along with high raptor abundance is likely to be linked to the positive correlation found between bird species richness at Boco Rock WF and rainfall. Statistical analysis concludes that overall species richness and diversity has decreased over time (2015-2023) and there is no evidence that this is caused by BRWF as the change in observed in all stratum.

In conclusion, results from mortality, bird and Anabat monitoring were broadly consistent with expectations given results of previous years and continue to support the conclusions of *Summary Results Report 2015-2023*, including that Boco Rock WF does not pose a significant threat to local bird and bat populations.

7. References

- DoE. (2015). *Referral guideline for 14 birds listed as migratory.* Canberra: Department of the Environment, Australian Government.
- Symbolix. (2024b). *Boco Rock Wind Farm Bird Utilisation Survey Year Nine Analysis.* prepared by Symbolix for NGH Environmental.

Appendix A Results: Mortality Surveys

January 2022 – October 2023 Detailed mortality results

Quarter	Month	Turbine ID:	Date	Common Name	Species:	No.	Threatened (Yes/No)	Easting	Northing	Notes:
1st	Jan	18	19/01/2021	White-striped Freetail Bat	Austronomus australis	1	No	685940	5945353	< week old. No obvious physical damage. Male.
1st	Feb	54	13/02/2022	White-striped Freetail Bat	Austronomus australis	1	No	691205.43	5951082.15	Body intact. 1 day old. Lower abdomen swollen with fluid. Male.
1st	Feb	59	13/02/2022	White-striped Freetail Bat	Austronomus australis	1	No	691519.92	5952724.54	1-2 days old. Damage to right forearm and both wing membranes. Male
1st	Mar	5	4/03/2022	Common Starling		1	No	685306	5941971	Fresh. Broken neck. Morning was very misty, may have flown into turbine tower.
4th	Nov	17	27/11/2022	Eurasian Skylark	Alauda arvensis	1	No	685932	5944944	Appears to have been scavenged, only head, body and one leg remain. May not have been killed by the turbine. Could have been dropped by predator. Fresh - one day old
1st	Jan	62	15/01/2023	Nankeen Kestrel	Falco cenchroides	1	No	692120	5953698	Feathers only, mainly primary wing weather. Some bones, picked

Boco Rock Wind Farm

Quarter	Month	Turbine ID:	Date	Common Name	Species:	No.	Threatened (Yes/No)	Easting	Northing	Notes:
										clean of flesh.
2nd	Mar	59	12/03/2023	White-striped Freetail Bat	Austronomus australis	1	No	691519.92	5952724.54	Body intact. Wings still soft, eyes present. Blood pooled in lower abdomen. Jaw appears broken.
3rd	Mar	59	12/03/2023	White-striped Freetail Bat	Austronomus australis	1	No	691519.92	5952724.54	Body intact. Wings still soft, eyes present. Blood pooled in lower abdomen.
2nd	Jun	50	26/06/2023	Stubble Quail	Coturnix pectoralis	1	No	690515	5953747	No obvious sign of external injury
3rd	Aug	51	25/08/2023	Australian Magpie	Cracticus tibicen	1	No	690888	5953529	No obvious sign of injury
3rd	Aug	5	28/08/2023	Common Starling	Sturnus vulgaris	1	No	685304	5941938	No obvious sign of injury
3rd	Sep	1	28/09/2023	Eurasian Skylark	Alauda arvensis	1	No	685646	5940674	No obvious sign of injury
4th	Oct	1	25/10/2023	Raven sp.	Corvus sp.	1	No	688216	5950005	Old carcass, difficult to assess injuries.

November 2023 – April 2024 Detailed mortality results

Quarter	Month	Turbine ID:	Date	Common Name	Species:	No.	Threatened (Yes/No)	Easting	Northing	Notes:
4th	Dec	39	20/12/2023	Eurasian Skylark	Alauda arvensis	1	No	688214	5950001	Body intact. 1 day old. Lower abdomen swollen with fluid. Male.

Boco Rock Wind Farm

NGH	
-----	--

Quarter	Month	Turbine ID:	Date	Common Name	Species:	No.	Threatened (Yes/No)	Easting	Northing	Notes:
1st	Jan	28	1/4/2024	Common Starling	Sturnus vulgaris	1	No	685470	5946863	Intact carcass, not scavenged and no sign of obvious injury
1st	Jan	1	1/5/2024	Australian Magpie	Cracticus tibicen	1	No	685841	5943653	Dry carcass and flattened from being on the ground for some time. Eyes missing. Difficult to determine injury as the carcass was quite stiff.
1st	Mar	64	3/25/2024	White-striped Freetail Bat	Austronomus australis	1	No	692299	5954181	Left forearm broken. Lower abdomen swollen.

Appendix B Results: Bird Surveys

Threatened species listed in bold.

January 2022 – October 2023 Bird survey results – utilisation and observation

Common Name	Scientific Name	Utilisation	Observation	Grand Total
Australasian Grebe	Tachybaptus novaehollandiae	59	1	60
Australasian Pipit	Anthus novaeseelandiae	0	8	8
Australasian Shoveler	Anas rhynchotis	24	1	25
Australasian Swamphen	Porphyrio melanotus	5	0	5
Australian Hobby	Falco longipennis	4	1	5
Australian Magpie	Cracticus tibicen	0	135	135
Australian Owlet-nightjar	Aegotheles cristatus	0	1	1
Australian Raven	Corvus coronoides	0	7	7
Australian Shelduck	Tadorna tadornoides	8	5	13
Australian Spotted Crake	Porzana fluminea	1	0	1
Australian Wood Duck	Chenonetta jubata	17	3	20
Black Swan	Cygnus atratus	59	2	61
Black-faced Cuckoo-shrike	Coracina novaehollandiae	0	3	3
Black-shouldered Kite	Elanus axillaris	11	2	13
Black-winged Stilt	Himantopus himantopus	1	0	1
Brown Falcon	Falco berigora	1	4	5
Brown Goshawk	Accipiter fasciatus	1	1	2
Brown Thornbill	Acanthiza pusilla	0	6	6
Brown Treecreeper	Climacteris picumnus	0	2	2
Brown-headed Honeyeater	Melithreptus brevirostris	0	6	6
Brush Bronzewing	Phaps elegans	0	1	1
Brush Cuckoo	Cacomantis variolosus	0	1	1
Buff-rumped Thornbill	Acanthiza reguloides	0	4	4
Chestnut Teal	Anas castanea	2	0	2

Boco Rock Wind Farm

Common Name	Scientific Name	Utilisation	Observation	Grand Total
Common Starling	Sturnus vulgaris	0	50	50
Crimson Rosella	Platycercus elegans	0	35	35
Diamond Firetail	Stagonopleura guttata	1	2	3
Duck spp	Duck spp	4	2	2
Dusky Woodswallow	Artamus cyanopterus	0	3	3
Eastern Spinebill	Acanthorhynchus tenuirostris	0	2	2
Easter Yellow Robin	Eopsaltria australis	0	1	1
Eurasian Coot	Fulica atra	76	2	78
Eurasian Skylark	Alauda arvensis	0	385	385
European Goldfinch	Carduelis carduelis	0	7	7
Fan-tailed Cuckoo	Cacomantis flabelliformis	0	5	5
Fuscous Honeyeater	Lichenostomus fuscus	0	3	3
Galah	Eolophus roseicapilla	0	39	39
Gang-gang Cockatoo	Callocephalon fimbriatum	0	2	2
Golden Whistler	Pachycephala pectoralis	0	1	1
Great Cormorant	Phalacrocorax carbo	1	0	1
Grebe spp	Grebe spp	4	0	4
Grey Currawong	Strepera versicolor	0	4	4
Grey Fantail	Rhipidura albiscapa	0	14	14
Grey Shrike-thrush	Colluricincla harmonica	0	31	31
Grey Teal	Anas gracilis	69	1	70
Hardhead	Aythya australis	20	0	20
Hoary-headed Grebe	Poliocephalus poliocephalus	47	0	47
Hooded Robin	Melanodryas cucullata	0	1	1
Horsfields Bronze-cuckoo	Chrysococcyx basalis	0	2	2
House Sparrow	Passer domesticus	0	2	2
King Parrot	Alisterus scapularis	0	1	1
Laughing Kookaburra	Dacelo novaeguineae	0	9	9

Boco Rock Wind Farm

Common Name	Scientific Name	Utilisation	Observation	Grand Total
Leaden Flycatcher	Myiagra rubecula	0	1	1
Little Pied Cormorant	Microcarbo melanoleucos	3	1	4
Little Raven	Corvus mellori	0	112	112
Magpie-Lark	Grallina cyanoleuca	0	8	8
Masked Lapwing	Vanellus miles	21	3	24
Nankeen Kestrel	Falco cenchroides	26	10	36
Noisy Miner	Manorina melanocephala	0	1	1
Pacific Black Duck	Anas superciliosa	93	12	105
Painted Button Quail	Turnix varius	0	1	1
Pallid Cuckoo	Cacomantis pallidus	0	3	3
Pied Currawong	Strepera graculina	0	23	23
Pink-eared Duck	Malacorhynchus membranaceus	1	0	1
Purple Swamp Hen	Porphyrio porphyrio	7	0	7
Red Wattlebird	Anthochaera carunculata	0	56	56
Red-browed Finch	Neochmia temporalis	0	1	1
Red-kneed Dotterel	Erythrogonys cinctus	1	0	1
Red-rumped Parrot	Psephotus haematonotus	0	2	2
Restless Flycatcher	Myiagra inquieta	0	1	1
Rose Robin	Petroica rosea	0	1	1
Rufous Whistler	Pachycephala rufiventris	0	11	11
Sacred Kingfisher	Todiramphus sanctus	0	1	1
Scarlet Robin	Petroica boodang	0	11	11
Shining Bronze-cuckoo	Chrysococcyx lucidus	0	2	2
Silvereye	Zosterops lateralis	0	3	3
Southern Whiteface	Aphelocephala leucopsis	1	0	1
Speckled Warbler	Chthonicola sagittata	0	3	3
Spotted Pardalote	Pardalotus punctatus	0	6	6
Striated Pardalote	Pardalotus striatus	0	54	54

Boco Rock Wind Farm

Common Name	Scientific Name	Utilisation	Observation	Grand Total
Striated Thornbill	Acanthiza lineata	0	5	5
Stubble Quail	Coturnix pectoralis	0	33	33
Sulphur-crested Cockatoo	Cacatua galerita	0	33	33
Superb Fairywren	Malurus cyaneus	0	10	10
Superb Lyrebird	Menura novae-hollandiae	0	3	3
Swamp Harrier	Circus approximans	1	0	1
Tree Martin	Petrochelidon nigricans	0	1	1
Unidentified waterfowl	Unidentified waterfowl	2	0	2
Wedge-tailed Eagle	Aquila audax	20	6	26
Weebill	Smicrornis brevirostris	0	1	1
Welcome Swallow	Hirundo neoxena	0	5	5
White-browed Scrubwren	Sericornis frontalis	0	3	3
White-browed Treecreeper	Climacteris affinis	0	3	3
White-eared Honeyeater	Lichenostomus leucotis	0	66	66
White-faced Egret	Egretta novaehollandiae	33	4	37
White-naped Honeyeater	Melithreptus lunatus	0	5	5
White-throated Treecreeper	Cormobates leucophaea	0	44	44
White-winged Triller	Lalage tricolor	0	1	1
Willie Wagtail	Rhipidura leucophrys	0	9	9
Yellow-faced Honeyeater	Lichenostomus chrysops	0	69	69
Yellow-rumped Thornbill	Acanthiza chrysorrhoa	0	4	4
Yellow-tufted Honeyeater	Lichenostomus melanops	0	2	2
Grand Total		620	1430	2050

Boco Rock Wind Farm

NGH

Opportunistic Records (November 2023 - April 2024)

Date	Month	Common Name	Native	Count	Observation	Site	Easting	Northing	Distance	Height	Raptor?	Notes
21/11/2023	Nov	Wedge-tailed Eagle	Yes	2	Observed	East of T42	688264	5949085	285	100	Yes	Soaring
21/11/2023	Nov	Nankeen Kestrel	Yes	1	Observed	T42	687967	5949197	0	10	Yes	Perched in tree
22/11/2023	Nov	Nankeen Kestrel	Yes	1	Observed	Front gate	686583	5949370	0	10	Yes	Hovering
23/11/2023	Nov	Nankeen Kestrel	Yes	1	Observed	Near T44	688546	5949500	100	12	Yes	Hovering
23/11/2023	Nov	Nankeen Kestrel	Yes	1	Observed	T01	685569	5940719	40	10	Yes	Hovering
19/12/2023	Dec	Nankeen Kestrel	Yes	1	Observed	Between T55 and T56	691384	5951373	100	20	Yes	Hovering
21/12/2023	Dec	Nankeen Kestrel	Yes	1	Observed	T16	686006	5944783	80	15	Yes	Hovering
21/12/2023	Dec	Wedge-tailed Eagle	Yes	2	Observed	T22	685863	5946516	280	60	Yes	Soaring
NGH												

Date	Month	Common Name	Native	Count	Observation	Site	Easting	Northing	Distance	Height	Raptor?	Notes
21/12/2023	Dec	Nankeen Kestrel	Yes	1	Observed	Gate to T25	687087	5947147		10	Yes	Hovering
22/12/2023	Dec	Nankeen Kestrel	Yes	1	Observed	T02	685089	5941353	40	15	Yes	Hovering
3/1/2024	Jan	Nankeen Kestrel	Yes	1	Observed	Near front gate	686584	5949461	NA	15	Yes	Hovering
3/1/2024	Jan	White-throated Needletail	Yes	20+	Observed	Near T42	687904	5949250	150	200	No	Flock of 20 + birds scattered over a large area and flying in an easterly direction
3/1/2024	Jan	Wedge-tailed Eagle	Yes	1	Observed	Near T42	688178	5949189	250	100	Yes	Soaring
4/1/2024	Jan	Nankeen Kestrel	Yes	1	Observed	Roughly halfway between T30 and T26	686493	5947515	NA	15	Yes	Hovering
4/1/2024	Jan	Nankeen Kestrel	Yes	1	Observed	Near T25	687281	5947062	100	20	Yes	Hovering

NGH	
-----	--

Date	Month	Common Name	Native	Count	Observation	Site	Easting	Northing	Distance	Height	Raptor?	Notes
5/1/2024	Jan	Nankeen Kestrel	Yes	1	Observed	Near T04	685241	5941675	80	7	Yes	In tree
12/2/2024	Feb	Nankeen Kestrel	Yes	1	Observed	Near T52	691084	5953939	40	15	Yes	Hovering
13/2/2024	Feb	Nankeen Kestrel	Yes	1	Observed	Near T2A	685547	5940992	120	15	Yes	Hovering
26/3/2024	Mar	Wedge-tailed Eagle	Yes	1	Observed	Near T43	688549	5949093	200	100	Yes	Riding thermal
26/3/2024	Mar	Nankeen Kestrel	Yes	1	Observed	T45	689096	5948911	60	10	Yes	In tree
28/3/2024	Mar	Nankeen Kestrel	Yes	1	Observed	Gate to T5	685308	5941995	0	20	Yes	Hovering
27/4/2024	Apr	Nankeen Kestrel	Yes	1	Observed	T52	691024	5953852	20	20	Yes	Hovering
27/4/2024	Apr	Nankeen Kestrel	Yes	1	Observed	T42	687933	5949168	50	20	Yes	Hovering

Boco Rock Wind Farm

Date	Month	Common Name	Native	Count	Observation	Site	Easting	Northing	Distance	Height	Raptor?	Notes
28/4/2024	Apr	Nankeen Kestrel	Yes	1	Observed	T32	686414	5948056	40	25	Yes	Hovering
28/4/2024	Apr	Nankeen Kestrel	Yes	1	Observed	T16	685977	5944702	30	15	Yes	Hovering
28/4/2024	Apr	Flame Robin	Yes	1	Observed	Between T02 and T02A	685286	5941194	10	1	No	Perched on rock wall

Wedge-tailed Eagle and Nankeen Kestrel survey results

Common Name	Scientific Name	Stratum	Location	Month	Year	Observation type	Number
Australian Hobby	Falco longipennis	Control	54r	Oct	2022	Seen	1
			T26	Sep	2022	Seen	2
			Gate to T25	Oct	2022	Seen	1
			Between Turbine 63 and T66	Mar	2023	Seen	1
			Neat T26	Jul	2023	Seen	1
Black-shouldered Kite	Elanus axillaris	Control	30r	Sep	2022	Seen	3
		Control	55r	Aug	2022	Heard	1

Common Name	Scientific Name	Stratum	Location	Month	Year	Observation type	Number
			Near T09	Jul	2022	Seen	3
			T25	Jul	2022	Seen	2
			Between T18 and T19	Sep	2022	Seen	1
			Т03	Sep	2022	Seen	1
			Near T09	Oct	2022	Seen	1
			B/W T05 and T04	Oct	2022	Seen	1
			B/W T04 and T03	Oct	2022	Seen	1
			Between Turbine T2A and T02	Nov	2022	Seen	1
			Gate between T2A and T2	Apr	2023	Seen	1
			T54	Aug	2023	Seen	1
			T28	Aug	2023	Seen	1
Brown Goshawk	Accipiter fasciatus	Woodland	103	Sep	2022	Seen	1
			Road to T58	Jul	2022	Seen	1
Nankeen Kestrel	Falco cenchroides	Woodland	51r	Sep	2022	Seen	1
		Control	47r	Apr	2022	Seen	1
			Between T2 and T2A	Apr	2022	Seen	1
		Grassland	84	Jul	2023	Seen	1

Common Name	Scientific Name	Stratum	Location	Month	Year	Observation type	Number
		Grassland	75	Oct	2022	Seen	1
		Grassland	47	Oct	2023	Seen	1
		Control	33r	Nov	2022	Seen	1
		Grassland	13r	Dec	2022	Seen	1
		Grassland	86	Jan	2022	Seen	1
		Control	40r	Feb	2022	Seen	1
		Control	39r	Jan	2023	Seen	1
			Between T02A and T02	Jan	2022	Seen	1
			Between T43 and T66	Feb	2022	Seen	1
			Between T13 and T14	Mar	2022	Seen	1
			Between T7 and T8	Mar	2022	Seen	1
			Between T2 and T2A	Apr	2022	Seen	1
			Between T7 and T8	Мау	2022	Seen	1
			Between T61and T60	Мау	2022	Seen	2
			Near T46	Мау	2022	Seen	1
			Opportunistic - Turbine 47	Jun	2022	Seen	1
			Opportunistic - Turbine 46	Jun	2022	Seen	1

Common Name	Scientific Name	Stratum	Location	Month	Year	Observation type	Number
			Turbine 44	Jul	2022	Seen	1
			Near T09	Jul	2022	Seen	1
			T25	Jul	2022	Seen	1
			T26	Sep	2022	Seen	1
			Near T05	Oct	2022	Seen	1
			T02A	Oct	2022	Seen	1
			Between Turbine T63 and T66	Dec	2022	Seen	1
			Near T25	Dec	2022	Seen	1
			Turbine 26	Feb	2023	Seen	1
			Turbine 55	Feb	2023	Seen	1
			Turbine 36	Mar	2023	Seen	1
			Road to T25	Apr	2023	Seen	1
			Gate to T01	Jun	2023	Seen	1
			B/W T25 and T26	Jun	2023	Seen	1
			Gate to T01	Jul	2023	Seen	1
			Between T06 and T07	Sep	2023	Seen	1
			T66	Sep	2023	Seen	1
			T46	Sep	2023	Seen	1

Common Name	Scientific Name	Stratum	Location	Month	Year	Observation type	Number
			T25	Sep	2023	Seen	1
			Т09	Oct	2023	Seen	1
			T21	Oct	2023	Seen	1
Swamp Harrier	Circus approximans	Wetland	Lake on Avon Lake Road	Oct	2022	Seen	1
Wedge-tailed Eagle	Aquila audax	Control	37r	Мау	2022	Seen	1
		Woodland	137	Feb	2022	Seen	1
		Woodland	132	Sep	2023	Seen	1
		Grassland	81	Mar	2022	Seen	1
		Grassland	75	Oct	2022	Seen	1
		Control	20r	Jun	2022	Seen	2
			Near T58	Apr	2022	Seen	1
			Between T3 and T2	Mar	2022	Seen	1
			Near site office	Mar	2022	Seen	1
			Near T58	Apr	2022	Seen	1
			Opportunistic - Turbine 61	Jun	2022	Seen	1
			Turbine 45	Jul	2022	Seen	1
			300m east of Turbine 32	Aug	2022	Seen	2

Boco Rock Wind Farm

NGH

Common Name	Scientific Name	Stratum	Location	Month	Year	Observation type	Number
			Near Turbine 63	Sep	2022	Seen	1
			T26	Sep	2022	Seen	1
			Near Turbine 58	Oct	2022	Seen	2
			B/W T16 and T15	Oct	2022	Seen	1
			Near T31	Dec	2022	Seen	1
			Turbine 13	Feb	2023	Seen	1
			Turbine 21	Feb	2023	Seen	2
			Turbine 16	Mar	2023	Seen	2
			150 W of T49	Jun	2023	Seen	2
			B/W T50 and T51	Jun	2023	Seen	1
			T02	Jun	2023	Seen	1
			Near T02	Jul	2023	Seen	1
			Between T65 and T66	Jul	2023	Seen	1
Total							102

Appendix C Accompanying reports

The following follow overleaf:

- C.1 Mortality Estimate report, prepared by Symbolix
- C.2 Bird Utilisation Survey analysis report, prepared by Symbolix
- C.3 Summary Results Report 2015-2023, prepared by NGH Consulting
- C.4 BRWF Results November 2023 April 2024, prepared by NGH Consulting

C.1 Mortality Estimate report

symboli**x**

Boco Rock Wind Farm Mortality Estimate - Year 9

Prepared for NGH Environmental, 27 June 2024, Ver. 1.0

This report outlines an analysis of mortality at Boco Rock Wind Farm. Primarily, we are concerned with two time periods: the final ten months of the original survey method (01 Jan 2023 to 31 Oct 2023), and the the first six months of the updated survey method (01 Nov 2023 to 30 Apr 2024). We also briefly comment on the cumulative mortality from 01 Jan 2015 to 31 Oct 2023, which is the entirety of the monitoring period under the original survey method.

The analysis is broken into the three related components below:

- Searcher efficiency / detectability estimated from trials in summer 2014-15 and winter 2015.
- Scavenger loss rates consisting of trials in August 2015.
- Mortality estimates based on monthly surveys throughout 2023 and early 2024, and also all surveys conducted throughout 2015 2022

1 Available data

Survey data was collected and provided by NGH Environmental. A brief summary of the data is provided below, and the ultimate focus of this report is a discussion of the potential mortality. Species archetype data was taken from Hull and Muir (2010).

1.1 Data cleaning

We used 2015-2022 data as previously provided and cleaned.

For the 2023 data, we cleaned and consolidated species name in the carcass finds data. Otherwise, data was used as-is.

Boco Rock Wind Farm Mortality Estimate - Year 9

2 Statistical methodology overview

Mortality through collision is an ongoing environmental management issue for wind facilities. Different sites present different risk levels; consequently different sites have different monitoring requirements. In order to estimate the mortality loss at a given site (in a way that is comparable with other facilities) we must account for differences in survey effort, searcher and scavenger efficiency. We used a Monte Carlo method to achieve this.

Best practice estimators project the number of found carcasses (*C*) up to the number of actual mortalities (*M*). They should account for:

- The probability a carcass will be detected by the searcher (*p*)
- The probability a carcass is not lost to scavenge or decay prior to the search (*r*)
- The probability a carcass falls within the searched area (*a*)
- The fraction of turbines searched (*f*)

Most mortality estimators, e.g. (Huso 2011), can be conceptualised as a ratio estimator

$$\hat{M} = \frac{C}{\hat{p} \cdot \hat{r} \cdot \hat{a} \cdot f} \tag{1}$$

with the terms in the denominator providing a "boost factor" to the number of carcasses found, C.

However, a limitation of analytical methods is estimating r when the time between surveys is not constant. In Australia, it is common for the time between searches to vary due to seasonal changes in effort or the use of a pulsed design in which the turbine is searched monthly with a return visit a few days later. Additionally, ratio estimators cannot handle the cases when zero carcasses are found, as zero multiplied by any number still gives zero.

To address this, Symbolix have developed a Monte Carlo algorithm. We have used this method for mortality estimates at over forty wind farms in Australia to date.

Monte Carlo methods (Sawilowsky (2003), Ripley (1987)) simulate a large set of possible survey results, by simulating the actual survey protocol, and sampling from empirical distributions for scavenge loss and searcher efficiency. In this way, we directly sample the probability a carcass was lost before the survey, negating the need to calculate r analytically each time.

We then estimate how many carcasses were truly generated, given the range of searcher and scavenger efficiencies, the survey frequency and coverage, and the true "found" details. After many simulations, we can estimate the likely range of mortalities that could have resulted in the recorded survey outcome (number of carcasses found).

This method has been benchmarked against analytical approaches (Huso (2011), Korner-Nievergelt et al. (2011))]. Its outputs are equivalent but it is able to robustly model more complex survey designs (e.g. pulsed surveys, rotating survey list).

Figure 1 provides an overview of the methodology. A detailed explanation can be found in Stark

and Muir (2020).

Figure 1: Overview of how the mortality estimation works.

The following sections outline how we estimate p, r and a. C is given by the field observation data, and f is defined by the survey design.

3 Analysis and modelling

The survey program consisted of carcass searches, and adjunct scavenger and detection trials. We summarise the methods, field data and analysis results for each below.

3.1 Carcass search data

In 2023, from January to October inclusive, carcasses searches were undertaken at all turbines (67 total). The hardstand and road area was searched twice per month, using a "pulsed" method where the second search was taken two days after the first. Additionally, during the first monthly search, 21 turbines were searched out to an 80m radius. This included the inner hardstand/road area, but also an extended vegetated area.

From November 2023 to April 2024, the survey design changed. The turbines on the farm were partitioned into two strata, a higher risk stratum (19 turbines), and a lower risk stratum (48). Each stratum had eight turbines sampled. Turbines were searched out to a radius of 120m.

Carcass searches were undertaken by human searchers.

The carcass searches provide the C and f terms in Section 2.

3.1.1 Survey effort

The mortality estimate was based on a dated list of turbine surveys. The survey frequency is summarised in Table 1.

In the Monte Carlo algorithm, we explicitly simulate the survey design. The proportion of turbines sampled (f) is therefore accounted for in the simulation.

Boco Rock Wind Farm Mortality Estimate - Year 9

Date	Hardstand	Hardstand + 80m Radius Ext	Hardstand + 120m Radius Ext
2023 Jan	113	21	
2023 Feb	113	21	
2023 Mar	113	21	
2023 Apr	113	21	
2023 May	113	21	
2023 Jun	113	21	
2023 Jul	113	21	
2023 Aug	113	21	
2023 Sep	113	21	
2023 Oct	113	21	
2023 Nov			16
2023 Dec			16
2024 Jan			16
2024 Feb			16
2024 Mar			16
2024 Apr			16

Table 1: Number of surveys per month.

3.1.2 Carcass finds

The breakdown of found carcasses per species are summarised in Table 2.

Table 2: Carcasses found during formal surveys, from the start of January 2023 to the end of April 2024.

Species	Bat	Bird	Feather Spot
Australian Magpie		2	
Common Starling		2	
Corvid sp.		1	
Eurasian Skylark		2	
Nankeen Kestrel			1
Stubble Quail		1	
White-striped Freetail Bat	2		

One carcass was found incidentally. It is reported for completeness in Table 3.

Boco Rock Wind Farm Mortality Estimate - Year 9

Table 3: Incidental carcass finds.

Species	Number found
White-striped Freetail Bat	1

3.2 Searcher efficiency

The aim of searcher efficiency trials is the quantify the effectiveness of observers, at finding carcasses. They provide the p term in Equation 2.

3.2.1 Field methods

Two searcher efficiency trials were held (summer 2014-15 and winter 2015). A range of small, medium and large avian carcass sizes were used. For bird detectability, all carcass sizes were used, while for bat detectability only small sized bird carcasses were used.

3.2.2 Results

No additional data has been collected since the original trials, and thus the analyses are unchanged. Tables 4 and 5 summarise the results.

Table 4: Detection efficiencies for small sizes (used for bat modelling).

Variable	Hardstand + Road	Extended Area
Number found	43	8
Number placed	51	38
Mean detectability proportion	0.84	0.21
Detectability lower bound (95% confidence interval)	0.71	0.1
Detectability upper bound (95% confidence interval)	0.93	0.37

Table 5: Detection efficiencies for all sizes (used for bird modelling).

Variable	Hardstand + Road	Extended Area
Number found	121	53
Number placed	131	111
Mean detectability proportion	0.92	0.48
Detectability lower bound (95% confidence interval)	0.86	0.38
Detectability upper bound (95% confidence interval)	0.96	0.57

On the hardstand and road, bat detectability is 84%, with a 95% confidence interval of [71%, 93%]. Bird detectability is 92% with a 95% confidence interval of [86%, 96%].

The detection rate is lower on the extended region. Bat detectability is 21%, with a 95% confidence interval of [10%, 37%]. Bird detectability is 48% with a 95% confidence interval of [38%, 57%].

3.3 Scavenger efficiency

In order to accurately estimate mortality, we must account for carcass loss to scavengers. Scavenger trials are performed to quantify the time until a carcass is completely lost as a result of scavenger activity, which is the r term in Section 2.

3.3.1 Field methods

An analysis of scavenger efficiency was also conducted at Boco Rock from the 31st August 2015 for a 28 day period. A mix of bats and other carcasses of various sizes were used to measure the scavenger activity - as bats can be difficult to source in the numbers required. Additional species including chickens, rats, quails, mice and one eagle.

The survey plan was defined by placing the carcasses in several locations in the site and checking the carcasses for up to four weeks, initially every 12 hours for the first three days, then daily for four days, then every two days for a week, then twice a week until the last day of survey.

3.3.2 Statistical methods

Survival analysis (Kaplan and Meier (1958), Kalbfleisch and Prentice (2011)) was used to determine the distribution of time until complete loss from scavenge (or decay). Survival analysis was required to account for the fact that we do not necessarily know the exact time of scavenge loss, only an interval in which the scavenge event happened. For example, any carcass which is unscavenged at the end of the trial, has its scavenge event in the interval $[x, \infty]$ (where x is the length of the trial).

By performing survival analysis we can estimate the time until carcass loss after a given length of time, despite these unknowns.

3.3.3 Results

No additional data has been collected since the original trials, and thus the analyses remain unchanged.

3.4 Coverage factor

The coverage factor estimates the probability that, given a carcass falls at a searched turbine, that the carcass falls within the searched area. This contributes to the a term in Section 2.

3.4.1 Fall zone simulation - methods

We generated a carcass fall-zone distribution for bats and birds, given the turbine size at the wind farm.

The fall-zone distribution is the end result of the simulation method detailed in Hull and Muir (2010). The simulation method is a ballistics model describing bird and bat strikes by turbine blades.

3.4.2 Coverage factor calculation - methods

The percentage of the fall zone not covered by the survey area, provides a correction factor in the mortality estimate. Because carcasses that fall outside the searched area have a zero probability of being detected by a survey, the likelihood of landing in this region is essential to understanding the relationship between detections and actual losses.

3.4.3 Simulation inputs

Table 6 displays the dimensions and RPM of the turbines at Boco Rock Wind Farm while Table 7 shows the bird and bat physical parameters used. These are input into the fall zone simulation.

Rotor Diameter (m)	Tower Height (m)	RPM
100	80	16.1

Table 6: Turbine specifications for Boco Rock Wind Farm.

Table 7: Bird and bat size parameters.

Species Type	Archetype	Mass (kg)	Min. area (sq m)	Max. area (sq m)
Bat	Gould's Wattled Bat	0.014	0.028	0.014
Bird	Raven	0.680	0.045	0.100

3.4.4 Results

Figure 3 displays the simulation results, given the factors specified above. We display the cumulative density function (CDF) on the y axis versus the distance from turbine on the x axis for each species type. The CDF describes the expected proportion of carcass which fall less than or equal to a certain distance from the turbine. For example, we see that we expect about 89% of bat carcasses to fall within 50m of the turbine.

Figure 3: Cumulative distribution function of the fall zone simulation output for birds and bats. Vertical lines indicate the survey radii of the pre-October 2023 (80m), and post October 2023 (120m) surveys.

Once the fall zone distribution is calculated, we generate a "coverage factor". The coverage factor represents the expected proportion of carcasses which fall within the searched area, given the search protocol.

Because of the difference between searcher efficiency in the hardstand and extended zones, we have calculated the coverage factor separately.

Each turbine has a different hardstand/road area. The average coverage factor in Hardstand and Road is 45% for bats, and 26% for birds.

The extended zone is everything in the search radius, that is not in the hardstand. Consequently, every turbine has a different extended area (despite the overall survey protocol being the same at each turbine).

The average coverage factor in Extended zone, up to and including October 2023, is 55% for bats, and 62% for birds.

The average coverage factor in Extended zone, from November 2023 onwards, is 55% for bats, and 74% for birds.

4 Mortality estimate

With estimates for scavenge loss, searcher efficiency, and survey coverage, we then converted the number of bat and bird carcasses detected into estimates of overall mortality at Boco Rock Wind Farm.

The mortality estimation is done via a Monte Carlo algorithm. We used 15000 simulations, with the survey design simulated each time. Random numbers of virtual mortalities were simulated, along with the scavenge time and searcher efficiency (based on the measured confidence intervals). The proportion of virtual carcasses that were "found" was recorded for each simulation. Finally, those trials that had the same outcome as the reported survey detections were collated, and the initial conditions (i.e. how many true losses there were) reported on.

The model assumptions are listed below:

- There were 67 turbines on site available to strike bats and birds.
- Search frequency for each turbine was taken from the list of actual survey dates.
- Bats and birds are on-site at all times during this period.
- Bats and birds that are struck are immediately replaced (i.e. strikes one day do not affect the chance of strikes the next).
- We have used the standard practice of assuming that all carcasses and all feather spots (regardless of size or composition) are attributable to the wind turbines.
- Finds are random and independent, and not clustered with other finds.
- Until October 2023, we assume there was equal chance of any turbine being involved in a collision / mortality. Post October 2023, we assume that within strata (higher and lower risk), this assumption holds but not between strata.
- We took scavenge loss and searcher efficiency rates as outlined above.
- We assumed an exponential scavenge shape.
- We assumed coverage factors as summarised above.

We ran a number of mortality estimates on bats and birds:

- Year 9: January 2023 to October 2023 (inclusive). This is the last of the survey under the old methods.
- Year 9: November 2023 to April 2024 (inclusive). This is the first six months of survey under the new methods.
- Cumulative years 1-9, January 2015 to October 2023. We have not run cumulative estimates past this point, due to the step change in survey design in November 2023.

4.1 Bats

In Year 9, Jan 23-Oct 23, a total of two bats were found. The resulting (median) estimate of total mortality is 15 individuals lost over the ten months.

In Nov 23-Apr 24, zero bats were found in both the higher and lower risk strata. The resulting (median) estimate of total mortality is 57 individuals lost over the six months.

Finally, we present the cumulative Y1-9 estimate (Jan 15 to Oct 23). Over this time period, a total of 74 bats were found. The resulting (median) estimate of total mortality is 465 individuals lost over the nine years.

These results are presented in Table 8 and Figure 4, to show the confidence on the mortality estimate.

Analysis Period	0%	50% (median)	90%	95%	99%
Y9: Jan 23-Oct 23	2	15	31	35	51
Y9: Nov 23-Apr 24	2	57	153	190	307
Y1-9: Cumulative Jan 15-Oct 23	301	465	580	614	667

Figure 4: Histograms of the total losses distributions (bats). The black solid lines show the median.

4.2 Birds

In Year 9, Jan 23-Oct 23, a total of six birds were found. The resulting (median) estimate of total mortality is 40 individuals lost over the ten months.

In Nov 23-Apr 24, two birds were found in both the higher and lower risk strata. The resulting (median) estimate of total mortality is 122 individuals lost over the six months.

Finally, we present the cumulative Y1-9 estimate (Jan 15 to Oct 23). Over this time period, a total of 63 birds were found. The resulting (median) estimate of total mortality is 395 individuals lost over the nine years.

These results are presented in Table 9 and Figure 5, to show the confidence on the mortality estimate.

Analysis Period	0%	50% (median)	90%	95%	99%
Y9: Jan 23-Oct 23	12	55	91	104	119
Y9: Nov 23-Apr 24	7	122	223	267	379
Y1-9: Cumulative Jan 15-Oct 23	358	564	723	767	911

Table 9: Percentiles of the bird losses distributions.

Figure 5: Histograms of the total losses distributions (birds). The black solid lines show the median.

References

- Hull, CL, and Stuart Muir. 2010. "Search Areas for Monitoring Bird and Bat Carcasses at Wind Farms Using a Monte-Carlo Model." *Australasian Journal of Environmental Management* 17 (2): 77–87.
- Huso, Manuela MP. 2011. "An Estimator of Wildlife Fatality from Observed Carcasses." *Environmetrics* 22 (3): 318–29.
- Kalbfleisch, John D, and Ross L Prentice. 2011. *The Statistical Analysis of Failure Time Data*. John Wiley & Sons.
- Kaplan, Edward L, and Paul Meier. 1958. "Nonparametric Estimation from Incomplete Observations." *Journal of the American Statistical Association* 53 (282): 457–81.
- Korner-Nievergelt, Fränzi, Pius Korner-Nievergelt, Oliver Behr, Ivo Niermann, Robert Brinkmann, and Barbara Hellriegel. 2011. "A New Method to Determine Bird and Bat Fatality at Wind Energy Turbines from Carcass Searches." *Wildlife Biology* 17 (4): 350–63.
- Ripley, Brian D. 1987. Stochastic Simulation. USA: John Wiley & Sons, Inc.
- Sawilowsky, Shlomo S. 2003. "You Think You've Got Trivials?" *Journal of Modern Applied Statistical Methods* 2 (1): 218–25. https://doi.org/10.22237/jmasm/1051748460.
- Stark, E, and S Muir. 2020. "Post Construction Bird and Bat Monitoring at Wind Farms in Victoria."

C.2 Bird Utilisation Survey analysis report

Boco Rock Wind Farm Bird Utilisation Survey - Year Nine Analysis

Prepared for NGH Environmental, 9 July 2024, Ver. 0.9 - For Review

This memo summarises our recent analysis of bird utilisation (point count) data collected at Boco Rock Wind Farm.

The aim of this analysis is to provide an overview of species and site characteristics. By comparing data collected through the nine years of operation, we aim to identify any changes in species presence or abundance that may be attributable to the presence of wind farm infrastructure. By using data from on-site as well as nearby reference sites, we are better able to understand if any patterns found are due to Boco Rock operations (as opposed to background changes in the area).

Data was collected by NGH Environmental¹, and cleaned and analysed by Symbolix.

Collection of general bird utilisation data at Boco Rock Wind Farm ceased in October 2023. Moving forward BRWF is conducting targeted surveys of bird species identified to medium to high risk.

Survey summary

The data consists of bird "point counts". Surveys were conducted at specific locations for a set period of time. During this time, all birds and bird movements were noted.

The design was a stratified random point survey, where the stratifications are based on the relevant habitats on the farm. Data was collected in three distinct areas/habitat types (see map in Figure 1):

- 1. Grassland/Pasture: Defined as pasture within 500 metres of a turbine.
- 2. Control/Reference: There is a potential to place a wind turbine in the vicinity, but no wind turbines within 500 m. These sites are chosen to be similar habitat to the grassland sites, but with no turbines nearby.
- 3. Woodland: These sites are located in woodland area in the region. Note that there is no turbine infrastructure nearby; however, they are not considered controls. Instead this area was included because of regulator concerns that woodland species would be affected by the nearby wind facility.

¹NGHBOCO_BUS_20240515.xlsx

Boco Rock Wind Farm Bird Utilisation Survey - Year Nine Analysis

Figure 1: Location of the three habitat types and survey points. The dots represent the turbine locations.

The survey effort (number of site surveys) per month is summarised in Tables 1 and 2.

Year	Mon	С	G	W	Total	Year	Mon	С	G	W	Total	Year	Mon	С	G	W	Total
2015	Jan	3	3	4	10	2017	Jan	4	3	3	10	2019	Jan	3	3	4	10
2015	Feb	3	4	3	10	2017	Feb	3	4	3	10	2019	Feb	3	4	3	10
2015	Mar	4	3	3	10	2017	Mar	3	3	4	10	2019	Mar	4	3	3	10
2015	Apr	3	4	3	10	2017	Apr	4	3	3	10	2019	Apr	4	3	3	10
2015	May	3	3	4	10	2017	May	4	3	3	10	2019	May	3	4	3	10
2015	Jun	3	5	2	10	2017	Jun	3	4	3	10	2019	Jun	3	3	4	10
2015	Jul	3	5	2	10	2017	Jul	3	3	4	10	2019	Jul	4	3	3	10
2015	Aug	3	4	3	10	2017	Aug	3	4	3	10	2019	Aug	3	4	3	10
2015	Sep	3	5	2	10	2017	Sep	2	3	4	9	2019	Sep	3	3	4	10
2015	Oct	3	4	3	10	2017	Oct	3	4	3	10	2019	Oct	4	3	3	10
2015	Nov	3	4	3	10	2017	Nov	3	3	4	10	2019	Nov	3	4	2	9
2015	Dec	3	4	3	10	2017	Dec	5	3	2	10	2019	Dec	4	4	2	10
2016	Jan	4	3	3	10	2018	Jan	3	4	3	10	2020	Jan	4	3	3	10
2016	Feb	3	4	3	10	2018	Feb	3	4	3	10	2020	Feb	4	3	3	10
2016	Mar	3	4	3	10	2018	Mar	3	3	4	10	2020	Mar	3	3	4	10
2016	Apr	3	4	3	10	2018	Apr	4	3	3	10	2020	Apr	3	4	3	10
2016	May	4	6	0	10	2018	May	4	3	3	10	2020	May	3	4	3	10
2016	Jun	3	2	3	8	2018	Jun	3	3	4	10	2020	Jun	3	3	4	10
2016	Jul	3	5	2	10	2018	Jul	4	3	3	10	2020	Jul	4	3	0	7
2016	Aug	3	3	4	10	2018	Aug	4	3	3	10	2020	Aug	3	3	4	10
2016	Sep	3	3	4	10	2018	Sep	3	4	3	10	2020	Sep	3	4	3	10
2016	Oct	3	0	7	10	2018	Oct	3	3	4	10	2020	Oct	4	3	3	10
2016	Nov	6	0	4	10	2018	Nov	4	3	3	10	2020	Nov	4	3	3	10
2016	Dec	4	3	3	10	2018	Dec	5	3	2	10	2020	Dec	3	3	4	10

Table 1: Number of distinct locations surveyed each month from 2015 to 2020. Note C, G, W corresponds to Control, Grassland, and Woodland respectively.

Boco Rock Wind Farm Bird Utilisation Survey - Year Nine Analysis

Year	Mon	С	G	W	Total	Year	Mon	С	G	W	Total
2021	Jan	2	4	3	9	2023	Jan	4	3	3	10
2021	Feb	2	2	3	7	2023	Feb	4	3	3	10
2021	Mar	4	3	3	10	2023	Mar	2	4	3	9
2021	Apr	4	1	3	8	2023	Apr	3	3	4	10
2021	May	3	4	3	10	2023	May	3	4	3	10
2021	Jun	3	2	3	8	2023	Jun	3	3	4	10
2021	Jul	3	3	3	9	2023	Jul	4	3	3	10
2021	Aug	4	3	3	10	2023	Aug	3	4	3	10
2021	Sep	3	3	4	10	2023	Sep	3	3	4	10
2021	Oct	3	4	3	10	2023	Oct	3	4	3	10
2021	Nov	1	3	3	7						
2021	Dec	4	0	0	4						
2022	Jan	4	3	3	10						
2022	Feb	4	3	3	10						
2022	Mar	3	4	3	10						
2022	Apr	3	1	3	7						
2022	May	3	4	3	10						
2022	Jun	3	3	3	9						
2022	Jul	3	4	4	11						
2022	Aug	3	4	3	10						
2022	Sep	3	3	4	10						
2022	Oct	4	4	2	10						
2022	Nov	5	5	0	10						
2022	Dec	3	3	4	10						

Table 2: Number of distinct locations surveyed each month from 2020 to 2023. Note C, G, W corresponds to Control, Grassland, and Woodland respectively.

4

symbolix

Methodology

Our objective was to provide information to assess the potential for indirect impacts to regional bird populations from the wind facility operations. This could manifest as changes in behaviour or avoidance of habitat over time.

The longitudinal, reference-treatment structure of the survey addresses this objective, by providing us the opportunity to test for changes in the on-site data that are not present in the reference data. To allow us to generate quantitative information, we considered a range of metrics and analysis approaches, rather than relying on a small number of statistical tests.

Mainly, we use graphical and descriptive approaches that focus on patterns in species mix. We use multivariate methods as well as single (univariate) metrics (species abundance, species richness and Shannon diversity) to provide the best chance of detecting important changes. However, we also use formal statistical tests (using linear models) to investigate changes in species richness and diversity over time.

Box plots

Box plots provide a graphical representation of the distribution of survey values for each time of year and habitat type. Half of the values are contained within the "box", with the whiskers (and dots) showing the spread of the other half. The line through the box shows the median.

Species mix plots

Each survey point and site has a unique species mix that changes over time. We used this fact to describe differences between survey points over different sites and times. The difference in species mix between two points (or different seasons etc.), is expressed as a "similarity distance" - specifically the Bray-Curtis similarity (Bray and Curtis 1957). The distance is a statistical measure that accounts for the difference in species between surveys (i.e. two surveys with exactly the same species would have zero "distance" between them). This presence / absence measure gives weighting to rare / hard to observe species, and ensures results are not skewed towards trends in very common species.

We calculate the similarity distance between each survey pair and plot this as an ordination chart. The closer two surveys are to each other in an ordination plot, the more similar the species mix is between them.

By tracking changes in this similarity distance over time, we can get an indicator of changes between surveys, seasons and sites, and between turbine and reference points (Clarke 1993).

Differences in landscape or habitat would manifest by making subsequent observations at the same point "closer" than observations at other points or other sites. A change in species mix due to wind farm infrastructure could present as a change in the distance between impact and reference sites (this might be quite sudden or a gradual trend).

Note that it is the relative distance between points that is important, not the absolute distance between them. That is, points that are closer within a plot are more alike than those that are far apart, but we cannot compare distances between two species mix (or "ordination") plots.

Results

Species abundance

The following charts are a simple overview of each species seen, and its relative abundance. This includes data across all observation points and across all time periods. Note that Figure 2 and Figure 3 show the total counts across all surveys. Take care when comparing total numbers, as the number of surveys differed between habitats.

In 2015, *Alauda arvensis* (Eurasian Skylark) was the most common species for visual and auditory counts at the control locations, and in the top two at the on-site grassland locations (Figure 2, 3). Generally the common species were shared by the on-site and reference grassland sites, e.g. *Cacatua galerita* (Sulphur-crested Cockatoo) and *Sturnus vulgaris* (Common Starling). The species profile at the woodlands sites was (understandably) somewhat different, with *C. galerita* being dominant in the visual counts, and *Cormobates leucophaea* (White-throated Treecreeper) being dominant in the auditory counts.

In 2016, *A. arvensis* was in the top two most common species for visual and auditory counts, at both the control and grassland locations. *S. vulgaris* was the most common species for visual counts at control and grassland sites. In control and grassland, there were fewer *C. galerita* visual counts compared with 2015. For visual counts, levels of *Corvus mellori* (Little Raven) remained fairly constant from 2015 to 2016. For auditory counts, levels of *Cracticus tibicen* (Australian Magpie) remained fairly constant from 2015 to 2016.

In 2017, *A. arvensis* and *S. vulgaris* were still among the most common species seen at control and grassland sites, although lower numbers overall were seen compared to previous years. *C. mellori* was observed visually in high levels again at these locations, similar to previous years. There were some high counts of *Hirundo neoxena* (Welcome Swallow) and *Chenonetta jubata* (Australian Wood Duck). Auditory observations were very similar to 2016's auditory observations, over all site types.

In 2018, *A. arvensis* and *S. vulgaris* were still among the most common species seen, with many *C. mellori* also observed at the Control sites. There were more *L. chrysops* seen in the Grassland site compared to previous years. Auditory counts in 2018 remained similar to previous years.

In 2019, *A. arvensis* and *S. vulgaris* were among the most common species seen at control and grassland sites, as in previous years. *C. mellori* also had high visual counts at the control sites. Visual counts of *A. arvensis* and *C. mellori* were lower at control sites in 2019 than in the previous year, although *A. arvensis* auditory counts increased slightly.

In 2020, *S. vulgaris*, *C. mellori*, and *A. arvensis* were among the most common species seen in both Control and Grassland sites. *C. galerita* and *E. roseicapilla* were seen more in 2020 Grassland, compared with 2019. Regarding auditory counts, *A. arvensis* and *C. tibicen* were the most commonly heard in Control and Grassland, similar to last year.

In 2021, S. vulgaris, and A. arvensis were the two of the more common species in Control and

Grassland, with a high count of *C. jubata* also being seen in Control areas. *A. arvensis* was the most commonly heard species in both Control and Grassland, with *C. tibicen* also recording moderate auditory counts.

In 2022, *A. arvensis* and *C. mellori* were the most common species seen in the control and Grassland sites. *A. arvensis* was the most commonly heard species in both Control and Grassland, with *C. tibicen* also recording moderate auditory counts.

In 2023, *A. arvensis* was the most common species seen in the control and Grassland sites. *A. arvensis* was the most commonly heard species in both Control and Grassland, with *C. tibicen* also recording moderate auditory counts.

In the Woodland location, very few *C. galerita* were visually observed in 2016 compared to 2015. Visual counts of *Lichenostomus chrysops* (Yellow-faced Honeyeater) also decreased from 2015 to 2016. *Pardalotus striatus* (Striated Pardalote) auditory counts increased from 2015 to 2016. In 2017, the number of *S. vulgaris* visual counts decreased compared to 2016, and the number of visual counts of *C. galerita* and *Eolophus roselcapilla* (Galah) increased compared to 2016. 2018 Woodland visual and auditory counts remained quite similar to previous years, although there were a few more *P. elegans* observed in 2018 than 2017. Visual counts for *L. chrysops* and *S. vulgaris* were lower in 2019 in 2018. Auditory counts in 2019 remained similar to previous years. In 2020, the most commonly seen species were *S. vulgaris* and *E. roseicapilla*, while *C. tibicen* was the most commonly heard species. In 2021, the most common visually observed species were *S. vulgaris* and *P. elegans*, while the auditory observed species were *P. striatus*, *C. tibicen*, and *Anthochaera carunculata* (Red Wattlebird), In 2022, the most common visually observed species was *N. leucotis* (White-eared Honeyeater). In 2023, the most common visually observed species was *L. chrysops*, while the most common auditory observed species was *N. leucotis* again.

Boco Rock Wind Farm Bird Utilisation Survey - Year Nine Analysis

Figure 2: Total visual counts by species for each habitat type. Only the top 10% of species are shown (for legibility). 9 9 July 2024

Release at client discretion

NGHBOCO20240628, Ver. 0.9 - For Review

Control Grassland Woodland Alauda arvensis -Gymnorhina tibicen -Pardalotus striatus -Nesoptilotis leucophaeus Anthochaera carunculata - Corrus arunculata - Corvus cordinoides - Cacatua galerita - Corvus cordinoides - Colluricincia harmonica - Strepera graculuna - Platvercius delanas 2015 • • -Strepera graculina Platycercus elegans 4 . Alauda arvensis Gymnorhina tibicen Pardalotus striatus Nesoptilotis leucotis Cormobate Anthochae offitiobales ieducyfielda inthochaera carufnculata Corvus mellori -Caligavis chrysops -Cacatua galerita Corvus coronoides -Colluricincla harmonica __Strepera graculina -2016 • Platycercus elegans Alauda arvensis mnorhina tibicen Gyń Gymnorthina tibicen Pardalotus striatus Nesoptilotis leucophaeus Anthochaera carunculata Corrus are arunculata Catagavis chrysops Cacatua galerita Cortvus cordinoides Colluricincia harmonica Strepera graculina Platycercus elegans 4 •••• 2017 -.... Alauda arvensis Gymporhina tibicen Pardalotus striatus Cormobates leucophaeus Anthochae (a carunculata Corvus mellor) Calgavis chrysops Cacatua galertia Collucticnica harmonica Strepera graculina Platycercus elegans . 2018 •••• Alauda arvensis Gymnorhina tibicen Pardalotus striatus ormobates leucotis ormobates leucotis ormobates leucotis ormobates leucotis ormobates leucotis caligavis chrysops Cacatua delerita Caligavis chrysops Collunicnica harmonica Platycercus elegans Platycercus elegans : . Species Corn 2019 4 ۰. Platycercus elegans Gymporhina tibicen Pardalotus striatus Cormobates leucophaeus Anthochae (a carunculata Caligavis chrysope Caligavis chrysope Caligavis chrysope Caligavis chrysope Caligavis chrysope Caligavis chrysope Caliuricincla harmonica Strepera graculata Platycercus elegans Γ • 2020 ٠ : -Alauda arvensis Gymnorthina tibicen Pardajolus striatus corrubates leucophaeus Anthochaere carunculata Corvus mellori Calgavis chrysops Cacatua gdiertia Calgavis chrysops Cacatua gdiertia Caluricincia harmonica Strepera graculina Platycercus elegans • Corm Anth 2021 = • t . Alauda arvensis Gymporhina tibicen Pardalotus striatus Cormobates leucophaeus Anthochae (a carunculata - Corvus mellor) Calgavis chrysops Cacatua galertia Collucticnica harmonica Strepera graculina Platycercus elegans ī 2022 i -• Platycercus eiegans ________ Alauda arvensis Gymnorhina tibicen Pardajotus striatus Cormobates leucophaeus Anthochaera carunculata ______Corvus mellori Caligavis chrysops Cacatua galerta Collurcincla harmonica Strepera graculina Platycercus elegans ŧ 2023 -30 60 90 30 60 90 ò 30 60 90 ò Counts (auditory)

Boco Rock Wind Farm Bird Utilisation Survey - Year Nine Analysis

Figure 3: Total auditory counts by species for each habitat type. Only the top 10% of species are shown (for
legibility).Release at client discretion109 July 2024

Reference-treatment comparisons

Figures 4 and 5 compare the species richness between habitat types throughout the year. These plots have the second and third quarters of the years to examine if there are any gross seasonal patterns; there don't appear to be any obvious patterns.

The overall richness of the woodland sites (Figure 5) is higher than both the grassland and control sites (Figure 4). The woodland richness has remained fairly constant over the last five years, accounting for seasonal variation. There does appear to be a slight decreasing trend over the course of the eight years. In particular, in the first three years, the richness looks to be decreasing, and it has remained at a stable lower level since then.

The richness in the control and grassland sites remains fairly stable since three years into the survey, although there is a hint of a decrease.

We also analysed the Shannon diversity (Shannon and Weaver (1949), Hill (1973)) per survey (Figure 6) and log visual count (Figure 7) metrics. The Shannon diversity plot showed similar patterns to the richness plot - seasonality variation in the woodland, fairly stable grassland sites (potentially a slight decreasing trend followed by a levelling off), and at the control sites, an apparent decrease followed by a levelling off in 2017 / 2018.

It is difficult to comment on the boxplot of any particular quarter, since there is so much variation.

The log visual count plot showed some seasonality, which didn't naturally follow a quarterly pattern. Control sites had higher log counts than other sites in earlier years on average, and there appeared to be a decreasing trend which stabilised in 2017 and 2018. However, it's harder to elucidate trends from count charts, as the variance is a lot greater. Certainly, the levels appear to be stable since 2016.

20 15 Control 10 5 Species richness Site 0 Control Grassland 20 Woodland 15 Grassland 10 5 0 2019: Jul, Aug, Sep -2019: Oct, Nov, Dec -2017: Jul, Aug, Sep 2021: Jul, Aug, Sep 2015: Jul, Aug, Sep 2015: Oct, Nov, Dec 2016: Jan, Feb, Mar 2016: Apr, May, Jun 2016: Jul, Aug, Sep 2017: Oct, Nov, Dec 2018: Jan, Feb, Mar 2018: Jul, Aug, Sep 2019: Jan, Feb, Mar 2020: Apr, May, Jun 2020: Jul, Aug, Sep 2020: Oct, Nov, Dec 2021: Jan, Feb, Mar 2021: Oct, Nov, Dec 2022: Apr, May, Jun 2022: Jul, Aug, Sep Sep 2023: Oct, Nov, Dec 2015: Jan, Feb, Mar 2015: Apr, May, Jun 2016: Oct, Nov, Dec 2017: Jan, Feb, Mar 2017: Apr, May, Jun 2018: Oct, Nov, Dec 2019: Apr, May, Jun 2020: Jan, Feb, Mar 2021: Apr, May, Jun 2022: Jan, Feb, Mar 2022: Oct, Nov, Dec 2023: Jan, Feb, Mar 2023: Apr, May, Jun 2018: Apr, May, Jun 2023: Jul, Aug, Time of year

Boco Rock Wind Farm Bird Utilisation Survey - Year Nine Analysis

Figure 4: Distribution of species richness per survey, by site and time of year. Winter months highlighted. Control and Grassland sites only.

Boco Rock Wind Farm Bird Utilisation Survey - Year Nine Analysis

Figure 5: Distribution of species richness per survey, by site and time of year. Winter months highlighted. Woodland sites only.

Figure 6: Distribution of Shannon diversity per survey, by site and time of year.

Release at client discretion

Boco Rock Wind Farm Bird Utilisation Survey - Year Nine Analysis

Figure 7: Distribution of total log (visual) counts, by site and time of year

Species mix

In addition to the overall comparisons above we can directly contrast the species mix between surveys, sites and time periods. We do this by using an ordination method, which provides a graphical representation of the similarity of different surveys (Figure 8).

In this plot the closer two survey points are, the more similar the species mix (presence / absence of species). Figure 8 shows an overall comparison of the three habitats. As with the richness charts above (Figures 4 and 5) we see that the species mix at the woodland sites

Release at client discretion

(bottom panel on Figure 8) is distinct from the grassland sites. We can see there is a movement in the species mix over time. Earlier surveys are roughly clustered around the origin point, but there's a trend towards the right as time goes on.

We note that although there are three plots show in the figure, they all originate from the same ordination run - the three plots are only to provide clarity, and it is valid in this case to compare between plots.

At control and grassland sites, there does appear to be a shift in species mix over time, as we can see that the earlier (2015) surveys are clustered around the origin, but then later surveys (2017 and after) have a shift toward the right-hand side of the plot. There is no evidence from this plot of a turbine-related effect, as the shift is the same in both sites.

We also explored the species mix under two other conditions - using a log transform (which accounts for abundance as well), and also a Wisconsin double standardisation (which standardises by both species and site). Generally, the patterns were the same as the richness-only mix, and so we haven't presented those figures. Woodland was still distinct, and grassland / control had a lot of overlap in mix. The shift in mix over time was evident in both these plots.

We can see from the ordination plots that there are general changes in mix over time, in all strata. There is no evidence of of changes in the grassland stratum that aren't mirrored by changes in the control stratum.

Boco Rock Wind Farm Bird Utilisation Survey - Year Nine Analysis

Figure 8: 2D MDS grouped by season and site, with distance based upon presence / absence.Release at client discretion169 July 2024

NGHBOCO20240628, Ver. 0.9 - For Review

Trend modelling

Shannon diversity

For the Shannon diversity model, we used a gamma generalised linear model with zero-inflation². We modelled diversity against:

- time (months from the start of the survey period),
- monthly rainfall³ (at the nearby Nimmitabel Wastewater Treatment Facility),
- log-distance (km) from the closest turbine, and
- and a zero-inflation factor (to account for the Shannon diversity equalling zero, if zero or one species are observed in a survey).

The model showed that increased rainfall is associated (p = 0.001) with increased Shannon diversity (on average, the diversity metric increases by a factor of 1.0012 per mm of rainfall). The ratio (in diversity) between the month with minimum rainfall (Jul 2018; 4.4 mm) and the month with maximum rainfall (Jan 2022; 187.2 mm), keeping all other things constant, is a factor of 1.25.

Shannon diversity also appears to be decreasing over time (p < 0.001). Each month, on average the Shannon diversity decreases by a factor of 0.996. For reference, the average Shannon diversity at the beginning of the surveys was 2.48 at control sites and 2.01 at grassland sites.

The zero-inflation factor accounted for the fact that the Shannon diversity had a value of zero, more than would be expected from a general gamma distribution (approximately 15% of the time, diversity equalled zero).

The interaction between site type and time (and indeed, the site type itself) was not significant (p = 0.35). While the baseline diversity is lower in the grassland area, its changes are reflected in the control area. Therefore, we do not have evidence of any changes in diversity due to wind farm activity.

Richness

For species richness, we used a negative binomial generalised linear model, which properly handles the integer nature of the data. The richness model gave similar results to the Shannon diversity model.

Concluding remarks

We also find that grassland sites have consistently lower diversity and counts compared to control sites. Results from some metrics, such as the richness and diversity, reflect the some variation in bird abundance, particularly evident in the woodland region. When we consider all

 $^{^{2}}$ Implemented in R using the glmmTMB package (Brooks et al. 2017).

³http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_startY ear=&p_c=&p_stn_num=070067

the univariate and multivariate visualisations, and the modelling, as combined evidence of the state of the species mix near the wind farm, we conclude that there has been a decrease in diversity and abundance in both the control and the grassland (impact) sites.

However, evidence does not point to the wind farm being the cause. There is a positive correlation between monthly rainfall and diversity/richness, and a positive correlation between distance from turbine and diversity/richness.

This data does indicate that the woodland species are somewhat different (in richness and relative abundance) from the grassland sites, but this is not unexpected. There is no evidence of an impact on woodland sites by the wind farm.

References

- Bray, J. Roger, and J. T. Curtis. 1957. "An Ordination of the Upland Forest Communities of Southern Wisconsin." *Ecological Monographs* 27 (4): 325–49. https://doi.org/10.2307/19 42268.
- Brooks, Mollie E., Kasper Kristensen, Koen J. van Benthem, Arni Magnusson, Casper W. Berg, Anders Nielsen, Hans J. Skaug, Martin Maechler, and Benjamin M. Bolker. 2017. "glmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling." *The R Journal* 9 (2): 378–400. https://journal.r-project.org/archive/2017/RJ-2017-066/index.html.
- Clarke, K. R. 1993. "Non-Parametric Multivariate Analyses of Changes in Community Structure." *Austral Ecology* 18 (1): 117–43.
- Hill, M. O. 1973. "Diversity and Evenness: A Unifying Notation and Its Consequences." *Ecology* 54 (2): 427–32.
- Shannon, C. E., and W. Weaver. 1949. *The Mathematical Theory of Information*. Urbana, Illinois: University of Illinois Press.

Prepared for Squadron Energy

Summary Results Report 2015-2023

Boco Rock Wind Farm, NSW

FERRETERS CORRECTED CONTRACTOR

October 2023

Project Number: 22-1024

Document verification

Project Title:	Boco Rock Wind Farm, NSW
Project Number:	22-1024
Project File Name:	22-1024 BRWF Summary Report 2015-2023 final V1.docx

Revision	Date	Prepared by	Reviewed by	Approved by
Final	18/10/2023	Bianca Heinze		Bianca Heinze
Draft	17/10/2023	Bianca Heinze	Jacqui Coughlan	Jacqui Coughlan

NGH Pty Ltd is committed to environmentally sustainable practices, including fostering a digital culture and minimising printing. Where printing is unavoidable, NGH prints on 100% recycled paper.

Table of contents

1.	Introduction	1
1.1.	Background	1
1.2.	Aim and structure	1
2.	Carcass searches	1
2.1.	Survey effort	1
2.2.	Birds	2
2.3.	Bats	3
2.4.	Mortality estimates	4
3.	Bird Utilisation Surveys	5
3.1.	Survey effort	5
3.2.	Species richness	5
3.3.	Species abundance	7
3.4.	Control-impact comparisons	8
3.5.	Distance relationship	.10
3.6.	Threatened species	11
3.7.	Conclusion	.12
4.	Microbat surveys	. 12
4.1.	Survey effort	.13
4.2.	Survey results	14
4.3.	Threatened species	.15
5.	Incidental observations	. 15
5.1.	Raptors	.15
5.2.	Waterbirds	.17
6.	Conclusion	20

Figures

Figure 2-1 Mortality estimates at BRWF for birds and bats Jan 2015 - Dec 2022, including trendlines	5
Figure 3-1 Bird species richness at BRWF and linear trendlines. G-C = grassland control, G-I = grassland	
impact, W = woodland	6

NGH

Boco Rock Wind Farm, NSW

Figure 3-2 Number of BUS observations for each stratum and year at BRWF (G-C = grassland control, G-I = grassland impact, W = woodland)
Figure 3-3 Box plot of Shannon diversity per survey (Jan 2015 - Dec 2022) for each strata demonstrating high variation over time, with grassland control generally mirroring grassland impact results
Figure 3-4 MDS (species assemblage analysis) grouped by season and stratum, with distance based upon presence/absence
Figure 3-5 Turbines located on cleared ridges, with woodland areas generally 250m or more from turbines
Figure 4-1 Microbat activity by year with trendline14
Figure 5-1 Total raptor observations (BUS and opportunistic) by year at BRWF showing trendline17
Figure 5-2 Number of Nankeen Kestrel observations and carcasses found annually
Figure 5-3 Number of waterbird observations and annual rainfall at Nimmitabel (mm)

Tables

Table 2-1 Total survey effort (number of surveys) for carcass searches at BRWF, by year	1
Table 2-2 Bird carcass finds at BRWF 2015-2022 (blank cells indicate species not found that year, aster indicates exotic species)	⁻ isk 2
Table 2-3 Bat carcass finds at BRWF 2015-2022	3
Table 2-4 Annual mortality estimates for birds and bats at BRWF Jan 2015 - Dec 2022	4
Table 3-1 Number of BUS surveys by strata and year	5
Table 3-2 Species richness for each year (of BBMPv1) shown per stratum and as a total (note: total is n sum of columns/rows as species may be recorded in multiple strata/years.)	ot a 6
Table 3-3 Number of observations during BUS for each strata and year	7
Table 3-4 Number of individuals per year for each threatened species recorded at BRWF	11
Table 3-5 Threatened species observations per strata and as a percentage of total	12
Table 4-1 Anabat survey sites at BRWF	13
Table 4-2 Anabat survey effort at Boco Rock January 2015 - August 2023	13
Table 4-3 Total positive call identifications by focus species and year (counts for Gould's Wattled Bat commenced in 2016)	14
Table 4-4 Positive call identifications by site and species	15
Table 5-1 Raptor species recorded opportunistically at BRWF	16
Table 5-2 Number of raptor observations per year by survey type	16
Table 5-3 Waterbird species recorded incidentally at BRWF and number of observations	18
Table 5-4 Number of waterbird observations sorted by location	18
NGH Pty Ltd 22-1024 - Final	ii

Appendices

Appendix A Raw bird survey results by year	A-I
Appendix B BUS statistical report 2022	B-I

Acronyms and abbreviations

AWS	Automatic weather station
BBAMP	Bird and Bat Adaptive Management Plan
BC Act	Biodiversity Conservation Act 2016 (NSW)
BCD	Biodiversity Conservation Division of DPE
ВОМ	Australian Bureau of Meteorology
BRWF	Boco Rock Wind Farm
BUS	Bird Utilisation Survey
СоА	Conditions of Approval
Cwth	Commonwealth
DAWE	Department of Agriculture, Water and the Environment (Cwth) (formerly DoEE)
DCCEEW	Department of Climate Change, Energy, the Environment and Water (formerly DAWE)
DPE	Department of Planning and Environment (NSW)
DPIE	(Former) Department of Planning, Industry and Environment (NSW) (now DPE)
EPBC Act	Environment Protection and Biodiversity Conservation Act 1999 (Cwth)
GIS	Geographic information system
ha	hectares
ID	identification
km	kilometres
m	metres
NSW	New South Wales
OEH	Office of Environment and Heritage, now BCD

Boco Rock Wind Farm, NSW

SOD	Shut down on demand
Sp/spp	Species/multiple species
V	Vulnerable
WTE	Wedge-tailed Eagle
WTNT	White-throated Needletail

1. Introduction

1.1. Background

Operational bird and bat monitoring has been ongoing at Boco Rock Wind Farm (BRWF) near Nimmitabel, NSW since January 2015 under the BRWF Bird and Bat Adaptive Management Plan v1 (BBMP). Throughout 2023, consultation and planning has been undertaken to update the BBMP to reflect the findings of monitoring over the last eight-nine years. The updated Bird and Bat Adaptive Management Plan is known as BRWF BBAMP v2 (or 'BBAMP').

Updates to the BBAMP focus on turbine risk assessment, species risk assessment, triggers and thresholds for threatened and non-threatened species strikes. The BBAMP also provides a pathway to reduce survey effort and eventually cease monitoring at BRWF in line with results of monitoring which indicate that the wind farm is not having a population scale or significant impact upon any bird or bat species.

To accompany the BBAMP and summarise justifications for reducing monitoring, BCD have requested this summary results report.

1.2. Aim and structure

This report aims to provide a summary of results of all operational monitoring surveys undertaken at BRWF as documented in Annual Reports. While surveys for 2023 are incomplete at the time of writing (late September), results are included to August 2023. Reporting is organised by survey type with a focus on raw results and analysis by Symbolix (analysis undertaken to December 2022). Methods are not described in this report as they are described in detail in BBMP v1 and Annual Reports.

2. Carcass searches

2.1. Survey effort

In each month of 2015-2023, pulse searches have been conducted in the high detectability zone (along 120m of road and within hardstand) at all 67 turbines (i.e. each turbine surveyed twice) and extended zone (to 80m radius) searches undertaken at 20 randomly selected turbines. Thus, annually there have been 1,608 high detectability zone searches and 240 extended zone searches with a few exceptions in the early years due to turbine maintenance. In total more 13,000 surveys have been undertaken in the high detectability zone and more than 2000 in the extended zone Table 2-1.

Table 2-1 Total survey effort (number of surveys) for carcass searches at BRWF, by year

	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
High detectability	1608	1557	1598	1607	1608	1608	1608	1608	1072	13874

	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Extended zone	240	240	240	240	240	240	240	240	160	2080

2.2. Birds

Sixty-seven bird carcasses have been found during operational monitoring between January 2015 and August 2023 (Table 2-2). The total number of bird carcasses found annually has been variable, ranging from two (in 2022) to 13 (in 2020) with a mean of 7.44 and a median of 7. Nearly half (48.4%) of the 67 finds are represented by three species: Eurasian Skylark (15 carcasses; 22.4%); Australian Magpie (10 carcasses; 14.9%) and Nankeen Kestrel (8 carcasses; 11.9%). One threatened bird species has been found: White-throated Needletail. One carcass of this species was found in 2018 and another in 2020.

Table 2-2 Bird carcass finds at BRWF 2015-2022 (blank cells indicate species not found that year, asterisk indicates exotic species)

Common Name	Species		2016	2017	2018	2019	2020	2021	2022	2023	Total
	Anthus										
Australasian Pipit	novaeseelandiae	1									1
Australian Magpie	Cracticus tibicen	1	1		1		5	1		1	10
Australian Raven	Corvus coronoides				1						1
Brown Falcon	Falco berigora				1						1
Brown Goshawk	Accipiter fasciatus			1							1
*Common Starling	Sturnus vulgaris	1	1				1		1	1	5
*Eurasian Skylark	Alauda arvensis	3	4	3		2		2	1		15
Fairy Martin	Petrochelidon ariel			1							1
Grey Fantail	Rhipidura albiscapa	2			1						3
Little Raven	Corvus mellori				1						1
Nankeen Kestrel	Falco cenchroides	2		1		2	1	1		1	8
Peregrine Falcon	Falco peregrinus			1	1						2
Raven	Corvus sp.						1				1
Rufous Fantail	Rhipidura rufifrons			1	1						2

Boco Rock Wind Farm, NSW

NGH

Common Name	Species	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Shining Bronze- cuckoo	Chrysococcyx lucidus				1						1
Silvereye	Zosterops lateralis			1							1
Southern Boobook	Ninox boobook						1				1
Stubble Quail	Coturnix pectoralis				1					1	2
Sulphur-crested Cockatoo	Cacatua galerita						1				1
Unidentifiable	Unidentifiable					2	1				3
Wedge-tailed Eagle	Aquila audax	1	1	1			1				4
White-throated Needletail	Hirundapus caudacutus				1		1				2
Total		11	7	10	10	6	13	4	2	4	67

2.3. Bats

Eighty-two bat carcasses have been found at BRWF in the period January 2015 to August 2023 (Table 2-3). The range is zero (2020) to 24 (2015) with an average of 10.25 and a median of 8 carcasses per year. Whitestriped Freetail Bat represents 73.2% of all bat carcass finds (60 carcasses found in the eight year period). Two threatened species have been found: four carcasses of Large Bent-winged Bat were found in 2015 and one Grey-headed Flying-fox in 2019.

Table 2-3 Bat carcass finds at BRWF 2015-2022

Common Name	Species	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Wattled Bat	Chalinolobus sp.	1									1
Eastern Bentwing Bat	Miniopterus oriane oceansis	4									4
Gould's Wattled Bat	Chalinolobus gouldii	1	6	5	1			2			15
Grey-headed Flying- fox	Pteropus poliocephalus					1					1
Large Forest Bat	Vespedalus darlingtoni		1								1

NGH

Boco Rock Wind Farm, NSW

Common Name	Species	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
White-striped Freetail Bat	Austronomus australis	18	11	12	7	2		6	2	2	60
Total		24	18	17	8	3	0	8	2	2	82

2.4. Mortality estimates

An estimate of overall annual mortality separated for birds and bats was derived by a Monte-Carlo simulation model (Hull and Muir 2010 in Symbolix 2022a) by Symbolix for each year of monitoring. The results are presented in Table 2-4 and Figure 2-1.Trendlines indicate that mortalities of both birds and bats at BRWF are declining, despite some variation from year to year. This is supported by Symbolix's statistical analysis for BRWF which shows there is a clear declining trend (refer to Section 3.1 and Appendix B in BBAMP v2).

The estimated bird mortality in 2020 was significantly greater than 2019 and at the time was attributed to the positive correlation between bird activity and rainfall, with rainfall totals for 2020 being above average following several very dry years. Additionally, it was acknowledged that the 2019/2020 Black Summer bushfires may have influenced bird activity (which was higher in 2020) and therefore bird morality. Subsequent surveying has confirmed the 2020 bird mortality spike to be an anomalous result. Although the 2023 dataset is incomplete, survey to September 2023 has found five bird carcasses which is within the range of past results and that the general trend remains stable.

Carcass type	2015	2016	2017	2018	2019	2020	2021	2022
Bat	160	138	129	63	27	8	55	15
Bird	115	88	131	118	76	151	40	21

Table 2-4 Annual mortality estimates for birds and bats at BRWF Jan 2015 - Dec 2022

Figure 2-1 Mortality estimates at BRWF for birds and bats Jan 2015 - Dec 2022, including trendlines

3. Bird Utilisation Surveys

This section reports the results of Bird Utilisation Surveys (BUS) only and does not include incidental observations which are discussed in Section 5.

3.1. Survey effort

Between January 2015 and August 2023,1194 twenty minute BUS have been undertaken at BRWF (398 hours). This effort is distributed over the three strata: grassland control (415 surveys); grassland impact (351) and; woodland (428), as shown in Table 3-1. The grassland impact stratum has had the lowest proportion of total effort (<30%). Survey effort month to month has been influenced by external factors such as flood and rain.

Strata	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total	%
Control	37	42	40	42	44	40	37	41	92	415	34.7%
Grassland	50	37	40	34	40	32	32	38	48	351	29.3%
Woodland	36	39	39	38	39	37	33	35	132	428	35.8%
Grand Total	123	118	119	114	123	109	102	114	272	1194	100%

Table 3-1 Number of BUS surveys by strata and year

3.2. Species richness

Species richness is the count of the number of species in an area. Between January 2015 and August 2023, BUS has yielded a count of 122 bird species for BRWF. Total species richness has varied from year to year

Boco Rock Wind Farm, NSW

(range: 65 to 89), with an average species richness across 2015-2022 of 72.1. Bird survey results by year are listed in Appendix A. Broken across the strata, annual results are shown in Table 3-2. Note that species richness for 2023 is for January – August only. Averages therefore are calculated for 2015-2022 inclusive.

Table 3-2 Species richness for each year (of BBMPv1) shown per stratum and as a total (note: total is not a sum of columns/rows as species may be recorded in multiple strata/years.)

Strata	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total	Average
Grassland – control	63	37	31	35	28	26	24	42	17	83	35.8
Grassland – impact	40	29	28	21	14	19	11	23	18	54	23.1
Woodland	66	58	58	53	53	52	55	65	27	101	57.5
Total	89	76	74	69	65	66	59	79	44	122	72.1

Table 3-2 shows that the woodland stratum has consistently higher species richness than grassland, which is to be expected given greater habitat complexity. Statistical analysis confirms this (refer to Appendix B). All sites exhibit an apparent sharp decline in species richness in the first year or two of monitoring, which has stabilised subsequently. For grassland sites, this was caused at least in part by the reclassification or elimination of some randomly sampled BUS sites due to poor representation of habitat strata (e.g. some 2015 grassland sites were immediately adjacent to woodland causing a skew is BUS results for those sites). As shown in Figure 3-1, there is a declining (linear) trend for species richness at all strata, although this is less pronounced at woodland sites.

During the years 2017 and 2019, statistical analysis found a correlation between declining species richness and below average rainfall at Nimmitabel. This was documented in Annual Reports for those years. Annual rainfall stabilised from 2020 but species richness did not in grassland strata. This was hypothesised to be

caused by a slow ecological bounce-back following drought years. Species richness for 2022 appears to show that delayed bounce back.

3.3. Species abundance

Species abundance is the number of individuals per species. Note that aural observations are given a count of one individual. Between January 2015 and August 2023, more than 8000 observations have been made of 17,879 birds at BRWF (note that this does not consider likely repeat observations of individuals over time). This includes 3652 observations in woodland, 2745 in grassland control and 1863 in grassland impact sites Table 3-3.

Strata	2015	2016	2017	2018	2019	2020	2021	2022	Total
Grassland – control	571	410	343	321	276	237	214	282	2745
Grassland – impact	501	268	240	174	183	139	127	182	1863
Woodland	657	605	468	453	342	343	324	328	3652
Total	1729	1283	1051	948	801	719	665	792	8260

Table 3-3 Number of observations during BUS for each strata and year

Observations in 2015 skews interpretation of trends due to BUS site changes between 2015-2016. Therefore, the graph has been made for 2016-2022 only. Again, there has been a declining trend of bird observations (Figure 3-2). Most pronounced has been a decline in the number of woodland observations and most stable are grassland impact observations. Of note, the declining trend has occurred across all strata including control.

Figure 3-2 Number of BUS observations for each stratum and year at BRWF (G-C = grassland control, G-I = grassland impact, W = woodland).

The most common (abundant) species at BRWF at grassland sites (control and woodland) have been remarkably consistent across the years. Eurasian Skylark (*Alauda arvensis*) and Common Starling (*Sturnus vulgaris*) were the top two most common species in 2015, 2016, 2017, 2018 and 2019. These two exotic

NGH Pty Ltd | 22-1024 - Final

species remained dominant subsequently but were also joined by native species Little Raven (*Corvus mellori*), Sulphur-crested Cockatoo (*Cacatua galerita*) and Australian Magpie (*Cracticus tibicen*) in subsequent years.

There has been variation in the most common (abundant) species at woodland sites with Sulphur-crested Cockatoo, Yellow-faced Honeyeater (*Lichenostomus chrysops*), Striated Pardalote (*Pardalotus striatus*), Galah (*Eolophus roseicapilla*), White-throated Treecreeper (*Cormobates leucophaea*), Red Wattlebird (*Anthochaera carunculate*), Australian Magpie, White-eared Honeyeater (*Nesoptilotis leucotis*) in the top places at different points between 2015-2022.

3.4. Control-impact comparisons

Year on year comparisons have been documented in Annual Reports, with the exception of 2022 for which an Annual Report was not produced. The statistical analysis report for 2022 is attached in Appendix B. In summary, analysis has been taken each year to look for any statistically significant changes. There are downward trends for richness and abundance (as discussed above) and these are present across all strata, therefore there is no significant difference between control and impact sites. Shannon diversity per survey indicates seasonal variation in the woodland, fairly stable grassland impact sites and an apparent decline in grassland control sites (2015-2016) followed by a levelling off from 2017/2018 (this has been previously accounted for by changes to survey sites). Variation in the grassland impact sites have generally been mirrored in the control sites (Figure 3-3).

Figure 3-3 Box plot of Shannon diversity per survey (Jan 2015 - Dec 2022) for each strata demonstrating high variation over time, with grassland control generally mirroring grassland impact results.

Species assemblage analysis is presented in Figure 3-4 below; each dot represents species and colours represent surveys with darker colours indicating earlier surveys (first quarter 2015) through to yellow indicating later surveys (fourth quarter 2022). Figure 3-4 shows that the assemblage at woodland sites is

NGH Pty Ltd | 22-1024 - Final

NGH

Boco Rock Wind Farm, NSW

distinct from grassland sites and that there is movement or change in the assemblage over time at all sites (although less so at woodland sites). The species assemblage plots are similar for grassland impact and control although with more variation at grassland impact sites. Overall assemblage changes in the impact stratum are mirrored in the control stratum.

Figure 3-4 MDS (species assemblage analysis) grouped by season and stratum, with distance based upon presence/absence

3.5. Distance relationship

Analysis has found no statistically significant relationship between distance from a turbine and proportion of birds from different guilds. For example, Eurasian Skylark from the Introduced Grassland Ground guild are just as likely to be encountered at a grassland survey site within five metres of a turbine as they are more than 500 m from a turbine. There is a positive association between Shannon diversity and distance from a turbine. For example, keeping other variables fixed, a site at twice the distance from a turbine is expected to have 1.03 times the diversity, and a site at ten times the distance is expected to have 1.11 times the diversity. However, given that turbines are located on the cleared, wind exposed ridgelines with little cover or habitat diversity it is not surprising that bird diversity is lowest near turbines and increases as habitat diversity increases away from the turbines and towards woodlands. Figure 3-5 shows a typical area of BRWF with woodland areas 250m or more from turbines and only scattered shrubs and trees approaching turbines.

Figure 3-5 Turbines located on cleared ridges, with woodland areas generally 250m or more from turbines

3.6. Threatened species

Eleven BC Act threatened species have been recorded at BRWF from January 2015 to August 2023. Excluding 2023 (incomplete dataset), the number of individuals observed of all threatened species combined per year has ranged from 14 to 67 as shown in Table 3-4. (Note: each sighting of a bird counts as an individual recorded, therefore this is an overestimate of abundance). Scarlet Robin has been recorded most consistently, being observed every year of survey. White-bellied Sea-eagle has not been observed during BUS since 2015 when a single individual was observed.

Table 3-4 Number of individuals per year for each threatened species recorded at BRWF

Species Name	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Brown Treecreeper <i>Climacteris picumnus</i>	1	1			1			1	2	6
Diamond Firetail Stagonopleura guttata		2		3	1			3		9
Dusky Woodswallow Artamus cyanopterus	7	19		10	8	4	7	3		58
Flame Robin Petroica phoenicea	1	8	1		2					12
Gang-gang Cockatoo Callocephalon fimbriatum	19					1		2		22
Hooded Robin <i>Melanodryas cucullata</i>	2				1		2	1		6
Scarlet Robin Petroica boodang	19	21	17	14	6	8	5	8	5	103
Speckled Warbler <i>Chthonicola sagittata</i>		6	5	1	2	1	1	3		19
Spotted Harrier Circus assimilis	2			1						3
Varied Sittella Daphoenositta chrysoptera		10	2							12
White-bellied Sea Eagle Haliaeetus leucogaster	1									1
Total	52	67	25	29	21	14	15	21	7	251

The majority of threatened species observations have been at woodland sites; Table 3-5 shows that 89% of threatened species observations have occurred at woodland BUS sites.

Strata	Observations	Percentage of total
Grassland control	12	7.3%
Grassland impact	6	3.7%
Woodland	146	89%
Grand Total	164	100%

Table 3-5 Threatened species observations per strata and as a percentage of total

3.7. Conclusion

The purpose of BUS is to ascertain whether BRWF is having a discernible impact upon local bird populations. The downward trends in species richness and abundance along with assemblage changes have occurred across all strata not just the impacted grassland. That is, changes in the grassland impact stratum are mirrored in the grassland control and woodland strata. This strongly suggests that BRWF is <u>not</u> having an impact upon local bird populations and that the patterns observed are due mostly to local and regional environmental conditions. This conclusion has been drawn for several years, supported by statistical analysis and has been documented in regular Annual Reports.

4. Microbat surveys

Anabat files have been analysed by Greg Richards and Glenn Hoye. Anabat files are scanned to count call passes of focus species:

- 1. Large Bent-winged Bat *Miniopterus oceanensis oriane* (Vulnerable under NSW *Biodiversity Conservation Act 2017* (BC ACT))
- 2. Eastern False Pipistrelle Falsistrellus tasmaniensis (Vulnerable BC Act)
- 3. White-striped Freetail Bat Austronomus australis
- 4. Gould's Wattled Bat Chalinolobus gouldii

These are focus species because they have been found regularly during carcass searches and/or are a threatened species. For reference, a full analysis of all bat calls was completed in 2016 and showed that the following additional bats species occur at BRWF:

- Chocolate Wattled Bat Chalinolobus morio
- Southern Freetail Bat Mormopterus planiceps
- Inland Broad-nosed Bat Scotorepens balstoni
- Large Forest Bat Vespadelus darlingtoni
- Southern Forest Bat Vespadelus regulus
- Little Forest Bat Vespadelus vulturnus

These species still remain largely absent from mortality searches.

4.1. Survey effort

For the duration of the monitoring program to date, Anabat surveys have been undertaken once per quarter (four times per year) to monitor microbat activity. Additional targeted (e.g. nacelle height) Anabat surveys were undertaken in 2015/2016 following mortality of Large Bent-winged Bat, however this data has been stored, analysed and reported on separately from the quarterly monitoring under BBMP v1¹. Quarterly Anabat survey sites are shown in Table 4-1.

|--|

Anabat site	Stratification	Description	Nearest turbine
AE-1	Grassland control	Open grassland near Avon Lake Road > 500 m from turbines	34, 35
AE-2	Grassland impact	Open grassland between turbines 49 & 50 (< than 500 m distance from turbines)	49, 50
AE-3	Woodland impact	Two rows of trees meeting < 500 m from turbine. No woodland patches occur within 500 m of turbines so this is the densest vegetation.	25
AE-4	Woodland control	Woodland > 500 m from turbines	35, 37

Approximately 560 Anabat survey nights have been undertaken at BRWF based on 16 survey nights per quarter each year (Table 4-2). Although four Anabat units have been placed for four nights each quarter, some units have malfunctioned from time to time, resulting in less than 100% survey efficacy. These instances were discussed in Annual Reports.

Effort	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
Quarter 1	16	16	16	16	16	16	16	16	16	144
Quarter 2	16	16	16	16	16	16	16	16	16	144
Quarter 3	16	16	16	16	16	16	16	16	16	144
Quarter 4	16	16	16	16	16	16	16	16		128
Total	64	64	64	64	64	64	64	64	48	560

Table 4-2 Anabat survey effort at Boco Rock January 2015 - August 2023

¹ Large Bent-winged Bat targeted monitoring was reported in NGH Environmental (2017) *Risk Analysis: Eastern Bentwing-bat, Boco Rock Wind Farm.* Reported prepared for CWP Renewables. This report was provided to OEH in 2017.

4.2. Survey results

Over January 2015 – December 2022, 8721 calls have been positively attributed to focus species (Table 4-3). Many thousands more have been attributed to the 'other species' group consisting of those species listed earlier which are not individually counted.

Table 4-3 Total positive call identifications by focus species and year (counts for Gould's Wattled Bat commenced in 2016)

Species	2015	2016	2017	2018	2019	2020	2021	2022	Total
Eastern False Pipistrelle	2	0	0	5	1	17	15	15	55
Gould's Wattled Bat		34	1082	1101	856	839	2038	778	6728
Large Bent-winged Bat	15	3	16	152	285	310	70	346	1197
White-striped Freetail Bat	209	90	155	110	53	41	21	62	741
Total	226	127	1253	1368	1195	1207	2144	1201	8721

Results have fluctuated widely from year to year (range 127-1368) and overall there appears to be an increasing trend in microbat activity (Figure 4-1). As for birds, this 'trend' in annual activity levels is likely to be related to environmental conditions such as rainfall rather than the operation of BRWF.

Microbat activity at BRWF also shows a strong seasonality, with most results obtained over the warmer months. Results can be sorted according to site, which (as shown in Table 4-1) is stratified into woodland and grassland impact and control. Surprisingly, the woodland impact site which consists only of two rows of trees meeting in a paddock has the highest activity level overall compared to other sites as shown in Table 4-4. The next highest activity level is recorded at grassland impact site which is an area of open grassland. The areas with the lowest activity levels are the control sites located more than 500m from a turbine.

NGH Pty Ltd | 22-1024 - Final

NGH

Boco Rock Wind Farm, NSW

Table 4-4 Positive call identificatio	ns by	site and	species
---------------------------------------	-------	----------	---------

Species	AE-1	AE-2	AE-3	AE-4
	Grassland control	Grassland impact	Woodland impact	Woodland control
Eastern False Pipistrelle	7	4	38	6
Gould's Wattled Bat	219	975	5168	366
Large Bent-winged Bat	34	126	941	96
White-striped Freetail Bat	210	246	185	100
Total	470	1351	6332	568

From this summary, we can surmise that BRWF is not having a negative effect on local microbat activity and that other differences between the sites (e.g. habitat and orographic) are likely to be more relevant to understanding microbat local activity.

4.3. Threatened species

Large Bent-winged Bat and Eastern False Pipistrelle have been present at BRWF at varying activity levels during 2015-2022. Given a threatened bat carcass has not been detected at BRWF since 2015, it seems unlikely that changes in activity levels are related to turbines or mortality. In fact, rainfall is more likely to be a factor in detection of Eastern False Pipistrelle given preference for wetter habitats, however this has not been analysed.

5. Incidental observations

Incidental bird observations at BRWF occur opportunistically during other surveys and while travelling around the site. Incidental observations are also recorded when checking the nine waterbodies/wetlands which are within and around the BRWF site. Fifty-one species have been recorded in this way.

5.1. Raptors

Eleven raptor species have been recorded opportunistically (Table 5-1) at BRWF (compared to 10 species recorded during BUS) with nearly double the number of incidental raptor observations compared to those made during BUS as shown in Table 5-2. Little Eagle and Swamp Harrier have not been recorded during BUS while Collared Sparrowhawk (*Accipiter cirrocephalus*) has only been recorded (on two occasions) during BUS. It was anticipated that raptor results would be low in BUS because raptors are not so active at the time of day that BUS are usually undertaken (mornings); for this reason they were excluded from BUS analysis and specifically recorded during incidental observations throughout the day.

NGH

Boco Rock Wind Farm, NSW

Table 5-1 Raptor species recorded opportunistically at BRWF

Common name	Species	No. observations
Australian Hobby	Falco longipennis	10
Black-shouldered Kite	Elanus axillaris	12
Brown Falcon	Falco berigora	11
Brown Goshawk	Accipiter fasciatus	1
Little Eagle	Hieraaetus morphnoides	1
Nankeen Kestrel	Falco cenchroides	85
Peregrine Falcon	Falco peregrinus	7
Spotted Harrier	Circus assimilis	2
Swamp Harrier	Circus approximans	2
Wedge-tailed Eagle	Aquila audax	78
White-bellied Sea Eagle	Haliaeetus leucogaster	1
Total		210

Table 5-2 Number of raptor observations per year by survey type

Survey type	2015	2016	2017	2018	2019	2020	2021	2022	2023	Total
BUS	23	15	20	19	6	4	8	16	1	112
Incidental	33	19	16	26	16	17	29	43	9	210

The purpose of recording incidental raptor observations at BRWF was to note whether BRWF was having an impact on raptor populations which might not be discernible through BUS alone (due to insufficient number of observations). Figure 5-1 shows that raptor observations have fluctuated widely from year to year during 2015 and 2022 but overall the number of observations has been steady.

NGH

Boco Rock Wind Farm, NSW

Figure 5-1 Total raptor observations (BUS and opportunistic) by year at BRWF showing trendline

Nankeen Kestrel is one of the most frequently recorded carcasses at BRWF during mortality surveys. Figure 5-2 presents a plot of number of annual Nankeen Kestrel observations and annual number of Nankeen Kestrel carcasses found and does not suggest a relationship that needs analysis. There is no evidence that BRWF is having a negative impact upon local raptor populations.

Figure 5-2 Number of Nankeen Kestrel observations and carcasses found annually

5.2. Waterbirds

Thirty-four species of waterbird (including two sets of 'unidentified waterfowl' have been recorded incidentally over January 2015 – August 2023 as shown in Table 5-3. This compares to 20 species recorded during BUS.

Boco Rock Wind Farm, NSW

Table E O	Wate what was a set	ممئمم ببممم مبطمط	منالمته ممانه منا			
1 able 5-3	vvaterbird spe	ecies recorded	incluentally a	IL BRWF and	to reamun	observations

Common name	Species	No. observations
Australasian Grebe	Tachybaptus novaehollandiae	2
Australasian Shoveler	Anas rhynchotis	2
Australian Darter	Anhinga novaehollandiae	1
Australian Reed Warbler	Acrocephalus australis	4
Australian Shelduck	Tadorna tadornoides	15
Australian Wood Duck	Chenonetta jubata	29
Banded Lapwing	Vanellus tricolor	2
Black Swan	Cygnus atratus	4
Chestnut Teal	Anas castanea	2
Eurasian Coot	Fulica atra	9
Grey Teal	Anas gracilis	8
Hardhead	Aythya australis	1
Little Pied Cormorant	Microcarbo melanoleucos	1
Masked Lapwing	Vanellus miles	6
Pacific Black Duck	Anas superciliosa	26
Pink-eared Duck	Malacorhynchus membranaceus	1
Whiskered Tern	Chlidonias hybrida	2
White-faced Egret	Egretta novaehollandiae	2
White-faced Heron	Egretta novaehollandiae	10
White-necked Heron	Ardea pacifica	1
Total		128

Waterbirds were most frequently recorded at the lake on Avon Lake Road (216 observations), followed by Boundary Lake (150 observations), the ephemeral wetlands 150m south-east of Turbine 30 (137) and Coopers Lake (126) as shown in Table 5-4.

Table 5-4 Number of waterbird observations sorted by location

Incidental observation site	Number of observations
Wetland 600m north of Turbine 49	83
Lake on Avon Lake Rd	216
Between T35 and T37	1

NGH Pty Ltd | 22-1024 - Final

Boco Rock Wind Farm, NSW

Incidental observation site	Number of observations
Boundary Lake	150
Coopers Lake	126
Dam near T30	42
Ephemeral lake by main gate	83
Ephemeral pool along Brechnoch Rd	86
Ephemeral pool along Cow Bum Rd	8
Ephemeral wetland 150 m SE Turbine 30	137
Sited near T33	1
T52 acre-sized wetland	3
Waterbody 600m north of T49	41
Total	977

The number of waterbird observations at local wetlands around BRWF appears to be correlated with annual rainfall at Nimmitabel as shown in Figure 5-3. This has not been statistically tested but demonstrates the likely driver of waterbird number fluctuations given no carcass detection at BRWF.

The purpose of recording waterbirds at nearby wetlands was to see if there was a correlation between waterbird activity and waterbird mortality at BRWF. Over more than eight years of monitoring, there have been no waterbird carcasses found at BRWF despite a high level of activity at nearby wetlands. Therefore, it can be stated that BRWF is not impacting local waterbird populations or their ability to move between areas of suitable habitat.

6. Conclusion

This report summarises the results of more than eight years of operational bird and bat monitoring at BRWF. Results are presented from January 2015 to August 2023, or, where an incomplete dataset would skew results, to December 2022. Three survey types have been undertaken: carcass searches, Bird Utilisation Surveys and microbat (Anabat). Additionally, incidental observations have focussed on raptors and waterbirds.

Over 13,874 high detectability zone and 2080 extended zone carcass searches, 67 bird and 82 bat carcasses have been found. Eurasian Skylark, Australian Magpie and Nankeen Kestrel were the most common bird species found, together representing around 50% of total bird finds. White-striped Freetail Bat is the most common bat species found representing 73.2% of all bat carcass finds.

Annual mortality estimates for birds and bats have been calculated by Symbolix for each complete year of survey (i.e. 2015-2022). Overall there is a declining trend in carcasses found and mortality estimates for both birds and bats.

The number of BUS surveys undertaken to date is 1194 over 398 hours. Survey effort has been distributed across three strata: grassland control (more than 500m from a turbine), grassland impact (less than 500m from a turbine) and woodland (all patches are more than 500m from a turbine). Total species richness, abundance and diversity has varied from year to year as measured by direct numbers and by statistical analysis, but there has been a clear declining trend across all three indicators. The declining trend in these parameters observed in the grassland impact site has been mirrored in the grassland control site indicating that factors other BRWF are influencing local bird dynamics. Changes in species assemblage in the grassland impact site are also present in the grassland control site, again indicating that BRWF is not the driver of change.

The majority (89%) of the threatened species recorded at BRWF are woodland species and have been recorded at the woodland sites. Woodland species richness and abundance has been more stable than grassland. This is unlikely to be related to the BRWF but does demonstrate that the wind farm is not affecting woodland patches locally.

Approximately 560 Anabat survey nights have been undertaken at BRWF with 8721 calls positively attributed to focus species. Anabat results show strong seasonality and activity appears to be increasing over time however, these results are more likely to be related to environmental conditions such as rainfall rather than operation of BRWF. This has not been analysed statistically. Nonetheless, results indicate that BRWF is not having a negative impact on microbat activity including that of threatened species.

Incidental observations have focussed on raptors and waterbirds at local wetlands. Raptor observations have been stable throughout the monitoring period and there is no evidence that BRWF is having an effect on the local raptor population, even for Nankeen Kestrel which is one of the most frequently found carcasses. Likewise, waterbird observations vary from year to year along with annual rainfall and waterbird carcasses have not been found at BRWF. Therefore it is highly unlikely that BRWF is having any impact upon local waterbird populations or their ability to move in response to rainfall changes.

Thus, overall all data collected over the past eight to nine years strongly suggests that BRWF is not having an impact upon local bird and bat populations. On this basis, we propose to scale back the monitoring program.
Boco Rock Wind Farm, NSW

Appendix A Raw bird survey results by year

Common name	Species name	2015	2016	2017	2018	2019	2020	2021	2022	2023	
Australasian Grebe	Tachybaptus novaehollandiae	2	16					2	41	14	
Australasian Pipit	Anthus novaeseelandiae	32	12	6	11	8	6	6	3	4	
Australasian Shoveler	Anas rhynchotis	13	12	5				7	14	6	
Australasian Swamphen	Porphyrio melanotus			3					5		
Australian Darter	Anhinga novaehollandiae				1						
Australian Hobby	Falco longipennis		1	3	2	2		2	3	1	
Australian Magpie	Cracticus tibicen	150	102	90	93	88	81	74	69	29	
Australian Owlet-nightjar	Aegotheles cristatus	2							1		
Australian Raven	Corvus coronoides	68	24	48	50	40	32	13	5		
Australian Reed Warbler	Acrocephalus australis	2	1		1		1	1			
Australian Shelduck	Tadorna tadornoides	1	2	2	1		6	8	9	1	
Australian Spotted Crake	Porzana fluminea			1						1	
Australian Wood Duck	Chenonetta jubata	20	7	7	1	1	2	12	10	7	
Banded Lapwing	Vanellus tricolor		1	4	1		1				
Black Swan	Cygnus atratus	8	12	6			1	9	37	14	
Black-faced Cuckoo-shrike	Coracina novaehollandiae	1	7	1	2	1	1	3	2		
Black-fronted Dotterel	Elseyornis melanops							1			
Black-shouldered Kite	Elanus axillaris		2					2	10	1	
Black-winged Stilt	Himantopus himantopus	4	1					7			
Brown Falcon	Falco berigora	6	4	3	5	3	2	4	2	3	
Brown Goshawk	Accipiter fasciatus	1							2		
Brown Quail	Coturnix ypsilophora		1								
Brown Songlark	Cincloramphus cruralis	2		1							
Brown Thornbill	Acanthiza pusilla	5	10	10	9	7	5	5 2 4			
Brown Treecreeper	Climacteris picumnus	1	1			1			1	1	
Brown-headed Honeyeater	Melithreptus brevirostris	2	7	5	5	6	1	3	4	2	
Brush Bronzewing	Phaps elegans								1		

Boco Rock Wind Farm, NSW

Common name	Species name	2015	2016	2017	2018	2019	2020	2021	2022	2023
Brush Cuckoo	Cacomantis variolosus	3		1			1		1	
Buff-rumped Thornbill	Acanthiza reguloides	6	4	3	6	1	1	2	4	
Chestnut Teal	Anas castanea		3	5				2	1	
Collared Sparrowhawk	Accipiter cirrocephalus		1	1						
Common Blackbird	Turdus merula				2					
Common Bronzewing	Phaps chalcoptera					2	2	1		
Common Starling	Sturnus vulgaris	90	53	47	46	48	43	36	27	10
Crescent Honeyeater	Phylidonyris pyrrhopterus	1								
Crested Pigeon	Ocyphaps lophotes	1	3	3	2	1	1			
Crimson Rosella	Platycercus elegans	46	33	26	39	20	15	23	13	11
Diamond Firetail	Stagonopleura guttata		2	1	3	1	1		2	
Dusky Woodswallow	Artamus cyanopterus	2	4	2	4	2	2	2	2	
Eastern Rosella	Platycercus eximius	12	4			3		1		
Eastern Spinebill	Acanthorhynchus tenuirostris	8	1	2	1	1		5	1	
Eastern Yellow Robin	Eopsaltria australis	3	3	1	2	2		1		
Eurasian Coot	Fulica atra	2	1	1	1		2	2	39	15
Eurasian Skylark	Alauda arvensis	338	325	263	234	218	147	183	218	66
European Goldfinch	Carduelis carduelis	29	17	23	8	9	6	2	4	1
Fairy Martin	Petrochelidon ariel		1	1						
Fan-tailed Cuckoo	Cacomantis flabelliformis	7	3	2		2	3	3	3	
Flame Robin	Petroica phoenicea	7	8	2	2	3				
Freckled Duck	Stictonetta naevosa		1							
Fuscous Honeyeater	Lichenostomus fuscus					1		1	1	1
Galah	Eolophus roseicapilla	65	29	35	20	22	40	13	23	5
Gang-gang Cockatoo	Callocephalon fimbriatum	6					1		1	
Golden Whistler	Pachycephala pectoralis			1	1				1	
Great Cormorant	Phalacrocorax carbo									1
Grey Butcherbird	Cracticus torquatus	7	11	5	5	3	5			
Grey Currawong	Strepera versicolor	7	5	5	5	6	4	3	1	2
Grey Fantail	Rhipidura albiscapa	19	16	9	5	5	7	4	7	3

Boco Rock Wind Farm, NSW

Common name	Species name	2015	2016	2017	2018	2019	2020	2021	2022	2023
Grey Shrike-thrush	Colluricincla harmonica	22	16	19	14	15	19	11	15	5
Grey Teal	Anas gracilis	19	18	9			1	19	42	13
Hardhead	Aythya australis	4							7	4
Hoary-headed Grebe	Poliocephalus poliocephalus	11	13	1				1	32	6
Hooded Robin	Melanodryas cucullata	2				1		2	1	
Horsfields Bronze-cuckoo	Chrysococcyx basalis	3		2	4					
House Sparrow	Passer domesticus				1	2		1	1	1
Intermediate Egret	Ardea intermedia			1						
Jacky Winter	Microeca fascinans				1	1				
King Parrot	Alisterus scapularis	1							1	
Laughing Kookaburra	Dacelo novaeguineae	26	21	11	14	1	4	5	4	3
Leaden Flycatcher	Myiagra rubecula		1	4					1	
Little Eagle	Hieraaetus morphnoides		1							
Little Pied Cormorant	Microcarbo melanoleucos								1	3
Little Raven	Corvus mellori	95	86	55	44	35	38	41	61	25
Magpie Lark	Grallina cyanoleuca	13	3	8	5	5	8	2		
Magpie-Lark	Grallina cyanoleuca								3	4
Masked Lapwing	Vanellus miles	5	24	15				10	13	8
Nankeen Kestrel	Falco cenchroides	25	14	16	17	8	8	20	26	5
Noisy Miner	Manorina melanocephala	3			2		2	2	1	
Olive-backed Oriole	Oriolus sagittatus		1		1					
Pacific Black Duck	Anas superciliosa	11	23	9	6	1	2	9	62	21
Pallid Cuckoo	Cacomantis pallidus	4	2	3	3	3	1	3	1	
Peregrine Falcon	Falco peregrinus	4	2		2					
Pied Currawong	Strepera graculina	38	15	21	15	7	8	14	12	5
Pink-eared Duck	Malacorhynchus membranaceus	2						4	1	
Purple Swamp Hen	Porphyrio porphyrio								3	3
Raven sp.	Corvus sp.	6	1		1		3			
Red Wattlebird	Anthochaera carunculata	49	38	25	27	29	22	31	25	19
Red-browed Finch	Neochmia temporalis		1			1			1	

Boco Rock Wind Farm, NSW

Common name	Species name	2015	2016	2017	2018	2019	2020	2021	2022	2023	
Red-kneed Dotterel	Erythrogonys cinctus			1							
Red-rumped Parrot	Psephotus haematonotus	1		3	1	2	3	1	2		
Restless Flycatcher	Myiagra inquieta	3		3	1	1				1	
Rufous Fantail	Rhipidura rufifrons				1						
Rufous Songlark	Megalurus mathewsi	3									
Rufous Whistler	Pachycephala rufiventris	24	18	8	3	6	6	5	6		
Sacred Kingfisher	Todiramphus sanctus	3	1	2	3	1			1		
Scarlet Robin	Petroica boodang	17	19	16	12	5	8	4	7	3	
Shining Bronze-cuckoo	Chrysococcyx lucidus	3	5	1		1			1		
Silvereye	Zosterops lateralis	10	8	1	6	4	2	1	2	1	
Singing Bushlark	Mirafra cantillans	3									
Southern Whiteface	Aphelocephala leucopsis	1				1	1		1		
Speckled Warbler	Chthonicola sagittata		4	3	1	2	1	1	2		
Spotted Harrier	Circus assimilis	2			3						
Spotted Pardalote	Pardalotus punctatus	9	17	13	11	4	6	8	5		
Spotted Quail-thrush	Cinclosoma punctatum		2	1			3	1			
Straw-necked Ibis	Threskiornis spinicollis		2	5							
Striated Pardalote	Pardalotus striatus	50	65	35	36	36	29	34	27	9	
Striated Thornbill	Acanthiza lineata	1	6	6	4	5	5	1	2		
Stubble Quail	Coturnix pectoralis	13	6	4	2	4	6	9	25	6	
Sulphur Crested Cockatoo	Cacatua galerita								5		
Sulphur-crested Cockatoo	Cacatua galerita	112	52	50	41	22	28	16	17	8	
Superb Fairywren	Malurus cyaneus	26	15	10	6	4	4	2	5		
Superb Lyrebird	Menura novae-hollandiae	2		3		1	1		2		
Swamp Harrier	Circus approximans	1						1			
Tree Martin	Petrochelidon nigricans	9	2	2			1				
Unidentified ducks	Anas spp.		6	3							
Unidentified Waterfowl	Unidentified waterfowl	3	2	1					2		
Varied Sittella	Daphoenositta chrysoptera		4	2							
Variegated Fairy-wren	Malurus lamberti	1									
Wedge-tailed Eagle	Aquila audax	18	13	15	20	11	13	9	17	3	

Boco Rock Wind Farm, NSW

Common name	Species name	2015	2016	2017	2018	2019	2020	2021	2022	2023
Weebill	Smicrornis brevirostris			1					1	
Welcome Swallow	Hirundo neoxena	11	6	3		3	1	3	4	1
Whiskered Tern	Chlidonias hybrida	3								
White-bellied Sea Eagle	Haliaeetus leucogaster	2								
White-browed Scrubwren	Sericornis frontalis	3	2	1	1		2	2	1	
White-browed Treecreeper	Climacteris affinis								2	
White-eared Honeyeater	Lichenostomus leucotis	46	38	35	34	24	24	25	35	11
White-faced Heron	Egretta novaehollandiae	8	21	13	1		1	2	19	13
White-naped Honeyeater	Melithreptus lunatus	6	1	4	3	4	3	2	4	1
White-necked Heron	Ardea pacifica	4		2						
White-plumed Honeyeater	Lichenostomus penicillatus	2								
White-throated Honeyeater	Melithreptus albogularis		1							
White-throated Needletail	Hirundapus caudacutus		1							
White-throated Treecreeper	Cormobates leucophaea	59	49	36	30	27	16	18	21	10
White-winged Chough	Corcorax melanorhamphos						1	1		
White-winged Triller	Lalage tricolor	1								
Willie Wagtail	Rhipidura leucophrys	19	8	9	6	11	7	2	6	1
Yellow-faced Honeyeater	Lichenostomus chrysops	55	44	23	28	21	23	18	39	14
Yellow-rumped Thornbill	Acanthiza chrysorrhoa	4	4	3	2	3	1	1	3	
Yellow-tailed Black Cockatoo	Calyptorhynchus funereus				1		5			
Yellow-tufted Honeyeater	Lichenostomus melanops								2	

Boco Rock Wind Farm, NSW

Appendix B BUS statistical report 2022

The BUS statistical report by Symbolix follows overleaf.

Boco Rock Wind Farm Bird Utilisation Survey - Year Eight Analysis

Prepared for NGH Environmental, 27 July 2023, Ver. 0.9 - For Review

This memo summarises our recent analysis of bird utilisation (point count) data collected at Boco Rock Wind Farm.

The aim of this analysis is to provide an overview of species and site characteristics. By comparing data collected through the eight years of operation, we aim to identify any changes in species presence or abundance that may be attributable to the presence of wind farm infrastructure. By using data from on-site as well as nearby reference sites, we are better able to understand if any patterns found are due to Boco Rock operations (as opposed to background changes in the area).

Data was collected by NGH Environmental¹, and cleaned and analysed by Symbolix.

Survey summary

The data consists of bird "point counts". Surveys were conducted at specific locations for a set period of time. During this time, all birds and bird movements were noted.

The design was a stratified random point survey, where the stratifications are based on the relevant habitats on the farm. Data was collected in three distinct areas/habitat types (see map in Figure 1):

- 1. Grassland/Pasture: Defined as pasture within 500 metres of a turbine.
- 2. Control/Reference: There is a potential to place a wind turbine in the vicinity, but no wind turbines within 500 m. These sites are chosen to be similar habitat to the grassland sites, but with no turbines nearby.
- 3. Woodland: These sites are located in woodland area in the region. Note that there is no turbine infrastructure nearby; however, they are not considered controls. Instead this area was included because of regulator concerns that woodland species would be affected by the nearby wind facility.

 1230046 Observation data 2022 update.xlsx, 230046 Survey Data 2022 update .xlsx, 21-039_NGHBOCO_BirdUtilisationData_2021.xlsx

Boco Rock Wind Farm Bird Utilisation Survey - Year Eight Analysis

Figure 1: Location of the three habitat types and survey points. The dots represent the turbine locations.

The survey effort (number of site surveys) per month is summarised in Table 1.

ctively.	Total	6	7	10	8	10	80	6	10	10	10	7	4	10	10	10	2	10	6	11	10	10	10	10	10
espe	M	c	ĉ	n	n	n	က	С	c	4	n	c	0	c	n	n	c	С	က	4	n	4	2	0	4
nd r	Ċ	4	2	c	1	4	2	С	c	c	4	e	0	С	c	4	1	4	က	4	4	e	4	ß	С
odla	C	2	2	4	4	c	ς	З	4	c	e	1	4	4	4	c	c	e	ŝ	co	e	З	4	ß	С
oW br	Mon	Jan	Feb	Mar	Apr	May	Jun	յոլ	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	յոլ	Aug	Sep	Oct	Nov	Dec
sland, aı	Year	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2021	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022	2022
ol, Gras	Total	10	10	10	10	10	10	10	10	10	10	6	10	10	10	10	10	10	10	7	10	10	10	10	10
ontr	Μ	4	с	С	c	с	4	З	c	4	С	2	2	С	c	4	с	с	4	0	4	с	c	с	4
to	ũ	co	4	e	c	4	e	б	4	c	e	4	4	С	c	с	4	4	က	co	e	4	e	c	с
spu	U	co	ი	4	4	c	က	4	c	c	4	с	4	4	4	С	с	с	က	4	e	с	4	4	с
rrespo	Mon	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
G, W co	Year	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020	2020
Note C,	Total	10	10	10	10	10	10	10	10	6	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
nth.	Μ	co	с	4	ი	ი	ς	4	ი	4	ი	4	2	с	ი	4	с	с	4	ი	ი	с	4	ი	2
u mo	Ċ	co	4	n	ი	ი	4	с	4	ი	4	с	ς	4	4	ი	с	с	က	ი	ი	4	ი	ი	с
each	с	4	c	n	4	4	З	С	ი	7	ი	с	ß	С	ი	ი	4	4	က	4	4	с	ი	4	ß
veyed	Mon	Jan	Feb	Mar	Apr	May	Jun	լոլ	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
ions sur	Year	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2017	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018	2018
ct locat	Total	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	8	10	10	10	10	10	10
istin	Μ	4	e	ი	ი	4	2	2	ი	2	ი	с	с	с	ი	e	с	0	ς	2	4	4	7	4	с
of d	Ċ	e	4	ი	4	ი	ß	ß	4	ß	4	4	4	с	4	4	4	9	2	ß	ი	с	0	0	С
nber	ပ	n	e	4	c	с	က	С	c	с	С	С	e	4	c	С	ი	4	С	С	С	С	c	9	4
1: Nun	Mon	Jan	Feb	Mar	Apr	May	Jun	յոլ	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Table]	Year	2015	2015	2015	2015	2015	2015	2015	2015	2015	2015	2015	2015	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016	2016

3

Methodology

Our objective was to provide information to assess the potential for indirect impacts to regional bird populations from the wind facility operations. This could manifest as changes in behaviour or avoidance of habitat over time.

The longitudinal, reference-treatment structure of the survey addresses this objective, by providing us the opportunity to test for changes in the on-site data that are not present in the reference data. To allow us to generate quantitative information, we considered a range of metrics and analysis approaches, rather than relying on a small number of statistical tests.

Mainly, we use graphical and descriptive approaches that focus on patterns in species mix. We use multivariate methods as well as single (univariate) metrics (species abundance, species richness and Shannon diversity) to provide the best chance of detecting important changes. However, we also use formal statistical tests (using linear models) to investigate changes in species richness and diversity over time.

Box plots

Box plots provide a graphical representation of the distribution of survey values for each time of year and habitat type. Half of the values are contained within the "box", with the whiskers (and dots) showing the spread of the other half. The line through the box shows the median.

Species mix plots

Each survey point and site has a unique species mix that changes over time. We used this fact to describe differences between survey points over different sites and times. The difference in species mix between two points (or different seasons etc.), is expressed as a "similarity distance" - specifically the Bray-Curtis similarity (Bray and Curtis 1957). The distance is a statistical measure that accounts for the difference in species between surveys (i.e. two surveys with exactly the same species would have zero "distance" between them). This presence / absence measure gives weighting to rare / hard to observe species, and ensures results are not skewed towards trends in very common species.

We calculate the similarity distance between each survey pair and plot this as an ordination chart. The closer two surveys are to each other in an ordination plot, the more similar the species mix is between them.

By tracking changes in this similarity distance over time, we can get an indicator of changes between surveys, seasons and sites, and between turbine and reference points (Clarke 1993).

Differences in landscape or habitat would manifest by making subsequent observations at the same point "closer" than observations at other points or other sites. A change in species mix due to wind farm infrastructure could present as a change in the distance between impact and

4

Release at client discretion

reference sites (this might be quite sudden or a gradual trend).

Note that it is the relative distance between points that is important, not the absolute distance between them. That is, points that are closer within a plot are more alike than those that are far apart, but we cannot compare distances between two species mix (or "ordination") plots.

Results

Species abundance

The following charts are a simple overview of each species seen, and its relative abundance. This includes data across all observation points and across all time periods. Note that Figure 2 and Figure 3 show the total counts across all surveys. Take care when comparing total numbers, as the number of surveys differed between habitats.

In 2015, *Alauda arvensis* (Eurasian Skylark) was the most common species for visual and auditory counts at the control locations, and in the top two at the on-site grassland locations (Figure 2, 3). Generally the common species were shared by the on-site and reference grassland sites, e.g. *Cacatua galerita* (Sulphur-crested Cockatoo) and *Sturnus vulgaris* (Common Starling). The species profile at the woodlands sites was (understandably) somewhat different, with *C. galerita* being dominant in the visual counts, and *Cormobates leucophaea* (White-throated Treecreeper) being dominant in the auditory counts.

In 2016, *A. arvensis* was in the top two most common species for visual and auditory counts, at both the control and grassland locations. *S. vulgaris* was the most common species for visual counts at control and grassland sites. In control and grassland, there were fewer *C. galerita* visual counts compared with 2015. For visual counts, levels of *Corvus mellori* (Little Raven) remained fairly constant from 2015 to 2016. For auditory counts, levels of *Cracticus tibicen* (Australian Magpie) remained fairly constant from 2015 to 2016.

In 2017, *A. arvensis* and *S. vulgaris* were still among the most common species seen at control and grassland sites, although lower numbers overall were seen compared to previous years. *C. mellori* was observed visually in high levels again at these locations, similar to previous years. There were some high counts of *Hirundo neoxena* (Welcome Swallow) and *Chenonetta jubata* (Australian Wood Duck). Auditory observations were very similar to 2016's auditory observations, over all site types.

In 2018, *A. arvensis* and *S. vulgaris* were still among the most common species seen, with many *C. mellori* also observed at the Control sites. There were more *L. chrysops* seen in the Grassland site compared to previous years. Auditory counts in 2018 remained similar to previous years.

In 2019, *A. arvensis* and *S. vulgaris* were among the most common species seen at control and grassland sites, as in previous years. *C. mellori* also had high visual counts at the control sites. Visual counts of *A. arvensis* and *C. mellori* were lower at control sites in 2019 than in the previous year, although *A. arvensis* auditory counts increased slightly.

In 2020, *S. vulgaris*, *C. mellori*, and *A. arvensis* were among the most common species seen in both Control and Grassland sites. *C. galerita* and *E. roseicapilla* were seen more in 2020 Grassland, compared with 2019. Regarding auditory counts, *A. arvensis* and *C. tibicen* were the most commonly heard in Control and Grassland, similar to last year.

In 2021, S. vulgaris, and A. arvensis were the two of the more common species in Control and

Grassland, with a high count of *C. jubata* also being seen in Control areas. *A. arvensis* was the most commonly heard species in both Control and Grassland, with *C. tibicen* also recording moderate auditory counts.

In 2022, *A. arvensis* and *C. mellori* were the most common species seen in the control and Grassland sites. *A. arvensis* was the most commonly heard species in both Control and Grassland, with *C. tibicen* also recording moderate auditory counts.

In the Woodland location, very few *C. galerita* were visually observed in 2016 compared to 2015. Visual counts of *Lichenostomus chrysops* (Yellow-faced Honeyeater) also decreased from 2015 to 2016. *Pardalotus striatus* (Striated Pardalote) auditory counts increased from 2015 to 2016. In 2017, the number of *S. vulgaris* visual counts decreased compared to 2016, and the number of visual counts of *C. galerita* and *Eolophus roselcapilla* (Galah) increased compared to 2016. 2018 Woodland visual and auditory counts remained quite similar to previous years, although there were a few more *P. elegans* observed in 2018 than 2017. Visual counts for *L. chrysops* and *S. vulgaris* were lower in 2019 in 2018. Auditory counts in 2019 remained similar to previous years. In 2020, the most commonly seen species were *S. vulgaris* and *E. roseicapilla*, while *C. tibicen* was the most commonly heard species. In 2021, the most common visually observed species were *S. vulgaris* and *P. elegans*, while the auditory observed species were *S. vulgaris* and *P. elegans*, while the auditory observed species were *S. vulgaris* and *P. elegans*, while the auditory observed species were *S. vulgaris* and *P. elegans*, while the auditory observed species were *S. vulgaris* and *P. elegans*, while the auditory observed species were *S. vulgaris* and *P. elegans*, while the auditory observed species were *S. vulgaris* and *P. elegans*, while the auditory observed species were *S. vulgaris* and *P. elegans*, while the auditory observed species were *S. vulgaris* and *P. elegans*, while the most common visually observed species was *A. arvensis*, while the most common auditory observed species was *N. leucotis* (White-eared Honeyeater).

Boco Rock Wind Farm Bird Utilisation Survey - Year Eight Analysis

Figure 2: Total visual counts by species for each habitat type. Only the top 10% of species are shown (for legibility). 8 27 July 2023

Release at client discretion

NGHBOCO20230727, Ver. 0.9 - For Review

Boco Rock Wind Farm Bird Utilisation Survey - Year Eight Analysis

Figure 3: Total auditory counts by species for each habitat type. Only the top 10% of species are shown (for
legibility).Release at client discretion927 July 2023

NGHBOCO20230727, Ver. 0.9 - For Review

Reference-treatment comparisons

Figures 4 and 5 compare the species richness between habitat types throughout the year. These plots have the second and third quarters of the years to examine if there are any gross seasonal patterns; there don't appear to be any obvious patterns.

The overall richness of the woodland sites (Figure 5) is higher than both the grassland and control sites (Figure 4). The woodland richness has remained fairly constant over the last five years, accounting for seasonal variation. There does appear to be a slight decreasing trend over the course of the eight years. In particular, in the first three years, the richness looks to be decreasing, and it has remained at a stable lower level since then.

The richness in the control and grassland sites remains fairly stable since three years into the survey, although there is a hint of a decrease.

We also analysed the Shannon diversity (Shannon and Weaver (1949), Hill (1973)) per survey (Figure 6) and log visual count (Figure 7) metrics. The Shannon diversity plot showed similar patterns to the richness plot - seasonality variation in the woodland, fairly stable grassland sites (potentially a slight decreasing trend followed by a levelling off), and at the control sites, an apparent decrease followed by a levelling off in 2017 / 2018.

It is difficult to comment on the boxplot of any particular quarter, since there is so much variation.

The log visual count plot showed some seasonality, which didn't naturally follow a quarterly pattern. Control sites had higher log counts than other sites in earlier years on average, and there appeared to be a decreasing trend which stabilised in 2017 and 2018. However, it's harder to elucidate trends from count charts, as the variance is a lot greater. Certainly, the levels appear to be stable since 2016.

20 15 Control 10 5 Species richness Site 0 Control Grassland 20 븑 Woodland 15 Grassland 10 5 0 2017: Jul, Aug, Sep 2021: Jul, Aug, Sep 2022: Apr, May, Jun 2022: Jul, Aug, Sep -2015: Jul, Aug, Sep 2015: Oct, Nov, Dec 2016: Jan, Feb, Mar 2016: Apr, May, Jun Sep 2017: Jan, Feb, Mar 2017: Apr, May, Jun 2017: Oct, Nov, Dec 2018: Apr, May, Jun 2018: Jul, Aug, Sep 2018: Oct, Nov, Dec 2019: Jan, Feb, Mar 2019: Jul, Aug, Sep 2019: Oct, Nov, Dec 2020: Jan, Feb, Mar 2020: Oct, Nov, Dec 2021: Jan, Feb, Mar 2021: Apr, May, Jun 2022: Oct, Nov, Dec 2015: Jan, Feb, Mar 2016: Oct, Nov, Dec 2018: Jan, Feb, Mar 2019: Apr, May, Jun 2020: Apr, May, Jun 2020: Jul, Aug, Sep 2021: Oct, Nov, Dec 2022: Jan, Feb, Mar 2015: Apr, May, Jun 2016: Jul, Aug, Time of year

Boco Rock Wind Farm Bird Utilisation Survey - Year Eight Analysis

Figure 4: Distribution of species richness per survey, by site and time of year. Winter months highlighted. Control and Grassland sites only.

11

Boco Rock Wind Farm Bird Utilisation Survey - Year Eight Analysis

Figure 5: Distribution of species richness per survey, by site and time of year. Winter months highlighted. Woodland sites only.

Figure 6: Distribution of Shannon diversity per survey, by site and time of year.

Release at client discretion

Boco Rock Wind Farm Bird Utilisation Survey - Year Eight Analysis

Figure 7: Distribution of total log (visual) counts, by site and time of year

Species mix

In addition to the overall comparisons above we can directly contrast the species mix between surveys, sites and time periods. We do this by using an ordination method, which provides a graphical representation of the similarity of different surveys (Figure 8).

In this plot the closer two survey points are, the more similar the species mix (presence / absence of species). Figure 8 shows an overall comparison of the three habitats. As with the

richness charts above (Figures 4 and 5) we see that the species mix at the woodland sites (bottom panel on Figure 8) is distinct from the grassland sites. We can see there is a movement in the species mix over time. Earlier surveys are roughly clustered around the origin point, but there's a trend towards the right as time goes on.

We note that although there are three plots show in the figure, they all originate from the same ordination run - the three plots are only to provide clarity, and it is valid in this case to compare between plots.

At control and grassland sites, there does appear to be a shift in species mix over time, as we can see that the earlier (2015) surveys are clustered around the origin, but then later surveys (2017 and after) have a shift toward the right-hand side of the plot. There is no evidence from this plot of a turbine-related effect, as the shift is the same in both sites.

We also explored the species mix under two other conditions - using a log transform (which accounts for abundance as well), and also a Wisconsin double standardisation (which standardises by both species and site). Generally, the patterns were the same as the richness-only mix, and so we haven't presented those figures. Woodland was still distinct, and grassland / control had a lot of overlap in mix. The shift in mix over time was evident in both these plots.

We can see from the ordination plots that there are general changes in mix over time, in all strata. There is no evidence of of changes in the grassland stratum that aren't mirrored by changes in the control stratum.

Boco Rock Wind Farm Bird Utilisation Survey - Year Eight Analysis

Figure 8: 2D MDS grouped by season and site, with distance based upon presence / absence.Release at client discretion1527 July 2023NGHBOCO20230727, Ver. 0.9 - For Review

Trend modelling

Shannon diversity

For the Shannon diversity model, we used a gamma generalised linear model with zero-inflation². We modelled diversity against:

- time (months from the start of the survey period),
- monthly rainfall³ (at the nearby Nimmitabel Wastewater Treatment Facility),
- log-distance (km) from the closest turbine, and
- and a zero-inflation factor (to account for the Shannon diversity equalling zero, if zero or one species are observed in a survey).

The model showed that increased rainfall is associated (p < 0.001) with increased Shannon diversity (on average, the diversity metric increases by a factor of 1.0014 per mm of rainfall). The ratio (in diversity) between the month with minimum rainfall (Jul 2018; 4.4 mm) and the month with maximum rainfall (Jan 2022; 187.2 mm), keeping all other things constant, is a factor of 1.3.

Shannon diversity also appears to be decreasing over time (p < 0.001). Each month, on average the Shannon diversity decreases by a factor of 0.996. For reference, the average Shannon diversity at the beginning of the surveys was 2.48 at control sites and 2.01 at grassland sites.

Interestingly, we found a positive association between (log) distance from turbine and Shannon diversity (p = 0.056). For example, keeping other variables fixed, a site at double the distance to a turbine is expected to have 1.03 times the diversity, and a site at ten times the distance is expected to have 1.11 times the diversity. However, we do not have enough information to assess whether this is due to turbine activity, or other factors such as choice of turbine location, and turbine support infrastructure (e.g. birdlife avoiding the hardstand and road).

The zero-inflation factor accounted for the fact that the Shannon diversity had a value of zero, more than would be expected from a general gamma distribution (approximately 14% of the time, diversity equalled zero).

The interaction between site type and time (and indeed, the site type itself) was not significant (p = 0.79). While the baseline diversity is lower in the grassland area, its changes are reflected in the control area. Therefore, we do not have evidence of any changes in diversity due to wind farm activity.

²Implemented in R using the glmmTMB package (Brooks et al. 2017).

³http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_ startYear=&p_c=&p_stn_num=070067

Richness

For species richness, we used a negative binomial generalised linear model, which properly handles the integer nature of the data. The richness model gave similar results to the Shannon diversity model.

Concluding remarks

We also find that grassland sites have consistently lower diversity and counts compared to control sites. Results from some metrics, such as the richness and diversity, reflect the some variation in bird abundance, particularly evident in the woodland region. When we consider all the univariate and multivariate visualisations, and the modelling, as combined evidence of the state of the species mix near the wind farm, we conclude that there has been a decrease in diversity and abundance in both the control and the grassland (impact) sites.

However, evidence does not point to the wind farm being the cause. There is a positive correlation between monthly rainfall and diversity/richness, and a positive correlation between distance from turbine and diversity/richness.

This data does indicate that the woodland species are somewhat different (in richness and relative abundance) from the grassland sites, but this is not unexpected. There is no evidence of an impact on woodland sites by the wind farm.

References

- Bray, J. Roger, and J. T. Curtis. 1957. "An Ordination of the Upland Forest Communities of Southern Wisconsin." *Ecological Monographs* 27 (4): 325–49. https://doi.org/10.2307/1942268.
- Brooks, Mollie E., Kasper Kristensen, Koen J. van Benthem, Arni Magnusson, Casper W. Berg, Anders Nielsen, Hans J. Skaug, Martin Maechler, and Benjamin M. Bolker. 2017. "glmmTMB Balances Speed and Flexibility Among Packages for Zero-Inflated Generalized Linear Mixed Modeling." *The R Journal* 9 (2): 378–400. https://journal.r-project.org/archive/2017/RJ-2017-066/index.html.
- Clarke, K. R. 1993. "Non-Parametric Multivariate Analyses of Changes in Community Structure." *Austral Ecology* 18 (1): 117–43.
- Hill, M. O. 1973. "Diversity and Evenness: A Unifying Notation and Its Consequences." *Ecology* 54 (2): 427–32.
- Shannon, C. E., and W. Weaver. 1949. *The Mathematical Theory of Information*. Urbana, Illinois: University of Illinois Press.

NGH

NGH Pty Ltd

NSW • ACT • QLD • VIC

ABN 31 124 444 622 ACN 124 444 622

E: ngh@nghconsulting.com.au

GOLD COAST

2B 34 Tallebudgera Creek Road Burleigh Heads QLD 4220 (PO Box 424 West Burleigh QLD 4219)

T. (07) 3129 7633

SYDNEY REGION

Unit 17, 21 Mary Street Surry Hills NSW 2010

T. (02) 8202 8333

BEGA

Suite 11, 89-91 Auckland Street (PO Box 470) Bega NSW 2550

T. (02) 6492 8333

MELBOURNE

Level 14, 10-16 Queen Street Melbourne VIC 3000

T: (03) 7031 9123

TOWNSVILLE

Level 4, 67-75 Denham Street Townsville QLD 4810

T. (07) 4410 9000

BRISBANE

Brisbane QLD 4000 T. (07) 3129 7633

NEWCASTLE - HUNTER & NORTH COAST

T3, Level 7, 348 Edward Street

Level 1, 31-33 Beaumont Street Hamilton NSW 2303

T. (02) 4929 2301

WAGGA WAGGA - RIVERINA & WESTERN NSW

35 Kincaid Street (PO Box 5464) Wagga Wagga NSW 2650

T. (02) 6971 9696

CANBERRA

Unit 8, 27 Yallourn Street (PO Box 62) Fyshwick ACT 2609

T. (02) 6280 5053

SUNSHINE COAST

Suite 101, Level 2/30 Main Drive Birtinya QLD 4575

(07) 4410 9000

WODONGA

Unit 2, 83 Hume Street (PO Box 506) Wodonga VIC 3690

T. (02) 6067 2533

C.4 BRWF Results November 2023 – April 2024

NGH

Prepared for Squadron Energy

Bird and Bat Adaptive Management Plan – Results November 2023 to April 2024

Boco Rock Wind Farm

Southern Tablelands, NSW

August 2024

Project Number: 230699

Project Title:	Boco Rock Wind Farm
Project Number:	230699
Project File Name:	230699 BRWF Results Nov 2023-April 2024 Final V1

Revision	Date	Prepared by	Approved by
Final V1.0	12/08/2024	Stella O'Dwyer	Bianca Heinze
Draft V1.0	6/08/2024	Stella O'Dwyer	Bianca Heinze
	[Enter a date]	[Click to enter name]	[Click to enter name]
	[Enter a date]	[Click to enter name]	[Click to enter name]

NGH Pty Ltd prints all documents on environmentally sustainable paper including paper made from bagasse (a by-product of sugar production) or recycled paper.

Table of Contents

Acror	nyms and	Abbreviations	iii
1.	Introduc	tion	1
1.1.		Objectives of the interim monitoring results report	1
2.	Carcass	searches	1
2.1.		Survey method & effort	1
	2.1.1.	Limitations	1
2.2.		Survey results	2
	2.2.1.	Birds	4
	2.2.2.	Bats	4
	2.2.3.	Comparison with previous years	4
	2.2.4.	Threatened species	5
	2.2.5.	Mortality estimates	5
	2.2.6.	Limitations to statistical analysis	5
3.	Bird surv	/eys	6
3.1.		Survey method & effort	6
	3.1.1.	White-throated Needletail	6
	3.1.2.	Wedge-tailed Eagle and Nankeen Kestrel	7
	3.1.3.	Limitations	8
3.2.		Survey results	8
	3.2.1.	White-throated Needletail	8
	3.2.2.	Wedge-tailed Eagle and Nankeen Kestrel	.12
4.	Incidenta	al observations	15
5.	Impact t	riggers and response management	15
5.1.		Impact triggers	.15
5.2.		Mitigation and adaptive management	.16
	5.2.1.	Reducing carcass search effort	.16
6.	Conclusi	on	16
7.	Reference	ces	18
Appe	ndix A Re	esults: Mortality Surveys	A-I
Appe	ndix B Re	sults: Bird Surveys	B-I
Appe	ndix C Sy	mbolix mortality estimate report	C-I
Appe	ndix D Ma	aps	D-I

Bird and Bat Adaptive Management Plan – Results November 2023 to April 2024 NGH Boco Rock Wind Farm

Figures

Figure 2-1	Typical long-grassed area, with lower detectability	2
Figure 2-2	Typical open areas with high detectability	2

Table

Table 2-1	Monthly distribution of carcasses/feather scatters found at BRWF (November 2023 – April 2024)3
Table 2-2	Summary of mortality survey results by date from BRWF (November 2023 – April 2024)
Table 2-3 included a	Results of mortality surveys between November and April for 2016-2024 (2015 results cannot be as do not match month range)
Table 2-4	Annual medium mortality estimates for previous years at BRWF
Table 3-1	White-throated Needletail survey effort November 2023 to April 20247
Table 3-2	Habitat assessment of potential roost habitat for White-throated Needletail
Table 3-3	White-throated Needletail Evening Roost Survey Results11
Table 3-4	Opportunistic White-throated Needletail records at BRWF (November 2023-April 2024)12
Table 3-5 2024)	Nesting surveys for Wedge-Tailed Eagle and Nankeen Kestrel at BRWF (November 2023-April
Table 3-6 2024)	Wedge-Tailed Eagle and Nankeen Kestrel records during site use survey (November 2023 – April
Table 5-1	Status of impact triggers during November 2023 to April 2024 season

AWS	Automatic weather station
BBAMP	Bird and Bat Adaptive Management Plan
BC Act	Biodiversity Conservation Act 2016 (NSW)
BCS	Biodiversity, Conservation and Science Group (BCS) of the NSW Department of Climate Change, Energy, the Environment and Water
вом	Australian Bureau of Meteorology
BRWF	Boco Rock Wind Farm
CE	Critically endangered
Cth	Commonwealth
E	Endangered
EEC	Endangered ecological community – as defined under relevant law applying to the proposal
EPBC Act	Environment Protection and Biodiversity Conservation Act 1999 (Cwth)
GIS	Geographic information system
ha	hectares
km	kilometres
LGA	Local government area
m	metres
TEC	Threatened ecological community
V	Vulnerable

1. Introduction

1.1. Objectives of the interim monitoring results report

This *Monitoring Results November 2023 - April 2024* report fulfills reporting requirements under BBAMP V2.0 (NGH 2023), section 8.1 for the interim period November 2023 to April 2024 to:

- Summarise the monitoring outcomes, including a list of any threatened species finds with BCS notification dates.
- Provides statistical analysis of mortality data including calculating mortality estimates.
- Analyses of any anomalies in monitoring outcomes, data collection or statistical analysis.
- Discusses triggers, applications of decision-making frameworks, progress and efficacies of any mitigation measures enacted and 'lessons learned' (adaptive management).
- Provides qualitative analysis of whether thresholds have been achieved for reducing carcass search effort.

2. Carcass searches

2.1. Survey method & effort

Carcass searches during November 2023 – April 2024 were conducted in accordance with the BBAMP V2.0. The monitoring plan at BRWF involves monthly non-pulsed searches of 18 out of 67 turbines from October¹ to April, representing 27% of the wind farm, as negotiated with BCS. The timing is to capture periods of highest seasonal risk to species of concern at BRWF (particularly migratory birds and bats). Refer to Section 5.2 of the BBAMP V2.0 for in-depth carcass search methodologies.

Carcass searches were undertaken monthly from November 2023 to April 2024 inclusive, for a total of six survey events for this reporting period. A total of 96 searches were conducted. Mortality searches were undertaken out to 120m² radius at each turbine, with a total search area of 1,920m² per survey event.

2.1.1. Limitations

Turbines are categorised into high risk and low risk stratum at the behest of BCS. To prevent selection bias, nine turbines from each stratum were randomly selected using QGIS's 'random selection tool' with a total sample of 18 turbines. Proportional bias resulting from uneven risk distribution between strata was addressed during statistical analysis to ensure balanced representation from both risk categories.

Rough ground and uneven vegetation distribution within the 120m radius search area makes for difficult search conditions. The majority (but not all) of the searched area is in a low detectability zone. BBAMP v1.3 accounted for this with 'high detectability' (hardstand and track) and 'extended'

¹ This first BBAMP v2 season began in November once the plan was approved; subsequent monitoring will commence October each year.

(other) zones. While statistical analysis indirectly takes into account the proportion of the searched area in each detectability zone, overall detectability is low (refer to Appendix C).

Seasonal variability is also accounted for in detectability co-efficients. However, vegetation density within each searched area also varies, including in the previously defined as 'extended zones' (see Figure 2-1 and Figure 2-2). During the course of the November 2023 – April 2024 reporting period it was found that detectability co-efficients likely did not sufficiently capture the variety of detectability across the 120m radius searched area. To overcome this, it is proposed to undertake new detectability trials at the start of the next season (October 2024).

Figure 2-1 Typical long-grassed area, with lower detectability

Figure 2-2 Typical open areas with high detectability

The first mortality surveys under BBAMP v2.0 (with increased search radius) in November were undertaken over four very long days exceeding 12 hours. The field staff identified that fatigue was affecting focus for carcass searches. Surveys were extended to five days to reduce daily fatigue, and this was reported as effective in increasing concentration by field staff.

Carcass finds (refer section below) were low in number, even considering the reduced survey period. It is not yet clear whether this reflects detectability (e.g. ground conditions discussed above), surveyor fatigue (also discussed) or a genuine reduction in carcass occurrence. Continued surveys will assist in determining cause.

2.2. Survey results

Mortality surveys during November 2023 – April 2024 resulted in four carcass/feather scatter finds. The monthly distribution of carcass finds is shown in below (see

Bird and Bat Adaptive Management Plan –Results November 2023 to April 2024 NGH Boco Rock Wind Farm

Table 2-1). The highest number of carcasses was found in January 2024 (first quarter). No carcasses were found in three out of the six months from November 2023 till April 2024. Locations of carcass finds are shown in Appendix D. No waterbirds or threatened species were found during mortality surveys November 2023 – April 2024.

Table 2-1 Monthly distribution of carcasses/feather scatters found at BRWF (November 2023 – April 2024).

Survey period	Number of carcasses found
November 2023	0
December 2023	1
January 2024	2
February 2024	0
March 2024	1
April 2024	0

Table 2-2 below shows the species identified from carcasses/feather scatters along with the number. Of the four species identified from mortality searches during November 2023 – April 2024, one was listed in the BBAMP (V2.0) as high risk species: White-striped Freetail Bat – this species has higher risk of collision with operating turbines.

Table 2-2 Summary of mortality survey results by date from BRWF (November 2023 – April 2024)

Tubine ID	Date	Survey Quarter	Common name	Species name	No. carcasses found	At risk species?	Found during monthly surveys?	
Birds								
39	12/20/2023	4 th	Australian Magpie	ustralian Magpie Cracticus tibicen		No	Yes	
28	1/4/2024	1 st	Common Starling	Sturnus vulgaris	1	No	Yes	
1	1/5/2024	1 st	Eurasian Skylark	Alauda arvensis	1	No	Yes	
			3					
Bats								
64	25/3/2024	1 st	White-striped Freetail Bat	Austronomus australis	1	Yes	No	
Total bats								

The full mortality survey results for November 2023 to April 2024 are given in Appendix A. The location of each carcass found is shown in the map in Appendix D1.2. Table 2-2 summarises the carcass search results.

2.2.1. Birds

Across all years of monitoring (2015-April 2024), the top three bird species found in mortality surveys are:

- 1. Eurasian Skylark (16 or 22% of the total bird finds)
- 2. Australian Magpie (11 or 15% total bird finds)
- 3. Nankeen Kestrel (8 or 11% total bird finds)

All three are common, secure species. The findings for November 2023 – April 2024 are broadly consistent with past results. Six raptor species have been found since 2015 with Nankeen Kestrel most numerous. Again, results from November 2023 – April 2024 are consistent with past results.

In summary the data from November 2023 – April 2024 does not present any surprising or unexpected results from the bird mortality carcasses found; the data is in keeping with results of previous years.

2.2.2. Bats

During November 2023 to April 2024, one bat carcass was found from a singular species: Whitestriped Freetail Bat. The White-striped Freetail Bat was found at turbine 64 in March (autumn) (see Table 2-2). Even taking into consideration the reduced survey period (6 months compared to 12), this is a low result. The range is zero (2020) to 24 (2015) with an average of 9 and a median of 8 bat carcasses per year.

Across all years of monitoring (2015-April 2024), most carcasses found have been from two bat species:

- 1. White-striped Freetail Bat (61 or 73% of the total bat finds)
- 2. Gould's Wattled Bat (15 or 18% total bat finds)

Both are common, secure species. However, the greatest percentage of finds is attributed only to a single species, the White-striped Freetail Bat (73%). The mortality rate for this species is discussed further in Section 2.2.5. The results from November 2023 to April 2024 are in keeping with previous years in terms of species type and proportion found during carcass searches.

2.2.3. Comparison with previous years

shows the number of carcasses found for each year of survey between November and April, to allow comparison with the current reporting period. The range of bird carcasses found during November to April mortality surveys is one to six. Finds during the current reporting period are in the middle of the range (three). The number of bat carcasses found in the same time period ranges from zero to 13. Finds during the current reporting period are at the lower end of the range (one).

Table 2-3 Results of mortality surveys between November and April for 2016-2024 (2015 results cannot be included as do not match month range)

Туре	Nov 2016- Apr 2017	Nov 2017- Apr 2018	Nov 2018- Apr 2019	Nov 2019- Apr 2020	Nov 2020- Apr 2021	Nov 2021- Apr 2022	Nov 2022- Apr 2023	Nov 2023- Apr 2024
Birds	5	6	5	3	6	1	2	3
Bats	13	5	7	0	8	2	2	1

2.2.4. Threatened species

No threatened species were detected during the carcass searches conducted from November 2023 to April 2024.

2.2.5. Mortality estimates

Mortality estimates were derived for November 2023 – April 2024. Cumulative estimates have not been undertaken with the new data due to the step change in survey design. As for previous years, mortality estimates were derived by the Monte-Carlo simulation model (Hull and Muir 2010 in Symbolix 2024).

The median mortality estimate for bats is 32 individuals lost over 6 months, with a range of two to 137. The median mortality estimate for birds is 73 individuals over 6 months, with a range of four to 205. Annual mortality estimates were not calculated due to limitations, discussed below. There are therefore limitations to comparison of 2023-2024 mortality estimates with previous years as a simple doubling of the 6-month figure is inaccurate.

However, for the purpose of context, previous annual median mortality estimates have been in the range of eight to 160 bats per annum and 40 to 131 birds (Table 2-4). The 6-month mortality estimate for the 2023-2024 BBAMP v2 reporting period appears to be roughly within or close to this range using a crude doubling calculation (i.e. 73 birds x 2 = 146). Although this seems to be an increase compared to recent years, the rate is not unreasonably high given the context of previous years' results (e.g. sudden spike in bird median estimated annual mortality in 2020).

Carcass type	2015	2016	2017	2018	2019	2020	2021	2022
Bat	160	138	129	63	27	8	55	27
Bird	115	88	131	118	76	151	40	40

Table 2-4 Annual medium mortality estimates for previous years at BRWF

2.2.6. Limitations to statistical analysis

Year to year variation and differences in mortality results are expected (as demonstrated by past results). The apparent rise in mortality estimates for birds and bats for November 2023 to April 2024 compared to recent years may be due to an increase in bird and bat mortality at BRWF. It is however, certainly influenced by a reduction in estimate certainty caused by changed survey
Boco Rock Wind Farm

methods. Note that carcasses were not detected at a greater frequency during the survey season despite an increased search radius.

The chance that the survey method detects a carcass can be *approximated* as (proportion of turbines searched) x (coverage factor) x (detection probability). In this case, the latter two terms interact with each other via a weighted averaged, because the chance of finding something in the vegetated zone is much smaller than that in the hardstand.

Under BBAMP V1.3, the *relative* chance of finding a bat, accounting for the survey design, searcher efficiency, and coverage, but ignoring scavenger² is approximately (1) * (.84*.45 + .21*.55) = 0.5. For birds, it is slightly higher: (1) * (.92*.26 + .48*.62) = 0.54.

Under BBAMP V2.0, the *relative* chance of finding a bat, accounting for the same factors, is approximately (16/67) * (.84*.45 + .21*.55) = 0.1. For birds, again it is slightly higher: (16/67) * (.92*.26 + .48*.74) = 0.15.

The difference is primarily driven by the reduced sampling fraction. So, all other things remaining constant, we expect to find 4-5 times fewer carcasses per survey under BBAMP V2.0 compared to BBMP V1.3 (in a given time period). Whether or not this manifests, depends on that assumption of constancy. It should be noted that BBAMP V2.0 focuses on times of high site usage, so it may actually have a higher underlying mortality rate than at other times of the year³.

In summary, survey methods under BBAMP V1.3 searched all available high detectability areas (i.e. 100% coverage of high detectability areas for all 67 turbines) compared to BBAMP V2.0 searches of 17 hardstands (25% coverage of high detectability areas), leading to lower probability of carcass detection. Although the search radius has increased for each turbine, and overall there is more area being searched across the wind farm, the effort has been displaced from high detectability to low detectability areas. So every carcass that is found must now represent a higher number of carcasses that might not have been found, leading to higher mortality estimates.

3. Bird surveys

3.1. Survey method & effort

Bird surveys under BBAMP v2.0 consist of targeted surveys for:

- White-throated Needletail
- Wedge-tailed Eagle
- Nankeen Kestrel

Refer to Section 5.3 of the BBAMP V2.0 for detailed methodologies.

3.1.1. White-throated Needletail

White-throated Needletail surveys were incorporated into BBAMP V2.0 following detection during mortality survey. The species was rarely recorded during nine years of bird utilisation surveys,

² (as we have assumed this to remain constant between design iterations)

³ This is a limitation to simply doubling search results to estimate annual carcass finds.

Boco Rock Wind Farm

most likely due to methodology being unsuitable for that species. Targeted White-throated Needletail surveys were undertaken between November 2023 and April 2024 and entail two methods. These include:

- 1. Evening roost survey identify potential roosting habitat within BRWF and a one-kilometre buffer zone, and monthly evening point count surveys of birds coming into roost in habitat identified at BRWF.
- 2. Sky scanning regular scanning for flocks of White-throated Needletail opportunistically throughout time on site.

Refer to Section 5.3.1 of the BBAMP V2.0 for additional survey methodology details. Potential roost habitat was identified by GIS using canopy and woody vegetation layers clipped to ridgelines. These patches were then ground-truthed and assessed for potential as White-throated Needletail roosts based on habitat description 'tall trees along ridge tops" (DoE, 2015). Survey effort is shown in Table 3-1 below.

Date	Method	Effort
November 2023	Watching potential roost	2 surveyors x 1.5 hrs = 3 hrs
December 2023	and 30 minutes after	2 surveyors x 1.5 hrs = 3 hrs
January 2024		2 surveyors x 1.5 hrs = 3 hrs
February 2024		2 surveyors x 1.5 hrs = 3 hrs
March 2024		2 surveyors x 1.5 hrs = 3 hrs
April 2024		2 surveyors x 1.5 hrs = 3 hrs
Total season effort		18 hours

Table 3-1 White-throated Needletail survey effort November 2023 to April 2024

3.1.2. Wedge-tailed Eagle and Nankeen Kestrel

Since 2015, Wedge-tailed Eagle nests near turbines 58 and 65 have been surveyed in October to December (BBAMP V1.3 2017). The Wedge-tailed Eagle pair have successfully fledged one or two chicks each year in 2016, 2017, 2018, 2019, 2020 and again in 2021. The updated BBAMP proposes to continue Wedge-tailed Eagle monitoring at this site and to include the following (BBAMP V2.0 2023):

1. Nesting survey – During November 2023 to April 2024, patches of woodland and trees were inspected for signs of stick nests. Nests are mapped as either active or inactive at the time of survey. Active nests are checked for fledging from October to December

Bird and Bat Adaptive Management Plan – Results November 2023 to April 2024 NGH Boco Rock Wind Farm

2. Site use – regular scanning for raptor species opportunistically throughout time on site at BRWF, including species, number and flight direction.

Refer to Section 5.3.2 of the BBAMP V2.0 (2023) for additional survey methodology details.

3.1.3. Limitations

Actual potential White-throated Needle-tail roost habitat is scant at BRWF, with most ridgelines bare of overstorey vegetation. Where upper slopes feature woodland edges or lines of trees, these were taken to constitute roost habitat at BRWF and were targeted for evening roost surveys. Windy weather during four roost surveys may have affected bird detectability, but this is considered unlikely to have influenced results.

One storm front passed during a survey event in the October 2023 – April 2024 period, providing the only genuine opportunity to scan for White-throated Needletails. Scans were still conducted regularly while on site at other times.

While raptors were regularly recorded during bird utilisation surveys under BBAMP V1.3, raptors were more frequently sighted opportunistically. Thus, focusing on opportunistic observation of raptors, without timed surveys, is not considered a limitation.

3.2. Survey results

3.2.1. White-throated Needletail

Roost habitat desktop analysis

To identify and delineate ridgelines within the landscape, a Topographic Position Index (TPI) analysis was carried out. The TPI is a robust method for spatially distinguishing topographic features such as hilltop, valley bottom, exposed ridge, flat plain and upper or lower slope. Our analysis was achieved using the Landform Classification tool within the Topography Toolbox for ArcGIS (Jenness 2006; Dilts 2015) run in ESRI ArcGIS Desktop 10.8.3 using a 2m DEM (GeoScience Australia 2024). As the method is scale-dependent, the model was run iteratively to test and select a range of parameter settings to attain the optimal settings for identifying the relevant topographic features within the vicinity of BRWF. The final output raster was smoothed and boundary-cleaned using ESRI Spatial Analyst before being converted to a vector polygon feature layer which delineated local topographic features, including ridgelines.

The mapped ridgeline areas were subsequently clipped to the NVR woody vegetation map attributes "Tree Cover" and "Tree Cover Matrix", which identified areas with theoretically appropriate landscape position and vegetation. NGH ecologists then examined the output to verify woody habitat on ridgelines and upper slopes. The final dataset includes areas identified as potential roost habitat for the White-throated Needle-tail at BRWF.

Roost Habitat

The White-throated Needletail has been "found to roost in tree hollows in tall trees on ridge-tops" (DoE, 2015). Areas of potential roost habitat were field validated and/or checked on GIS. Results of habitat assessment (HA) at potential woodland roosting sites (as shown in figures in Appendix D)

Boco Rock Wind Farm

are given in Table 3-2. In summary, three sites were selected as potential White-throated Needletail roost locations and targeted for further survey near Turbines 42, 45 and 25.

Table 3-2 Habitat assessment of potential roost habitat for White-throated Needletail

HA ID	Comments	Potential roost site?	Photo
1	Field: Scattered trees with very small patch woodland. Approximate tree height 10-12 m. Trees not tall, hollows potentially present, small patch, location not entirely ridge-top. Between turbine 35 and 37.	No	
2	Field: Woodland habitat on upper slopes extending toward ridge and around turbine 42. Approximate tree height 12-15 m. Trees taller, hollows potentially present, small patch, trees close to ridge-top.	Yes	

Bird and Bat Adaptive Management Plan –Results November 2023 to April 2024 ${\sf NGH}$

HA ID	Comments	Potential roost site?	Photo
3	Field: Woodland trees along slopes extending to edge of ridge, mainly mature trees with hollows present. Approximate tree height 10- 15 m. Turbine 45.	Yes	
4	Field: Woodland on slope and in gully with finger of open woodland <i>Eucalyptus</i> <i>viminalis</i> extending along upper slope near ridge. Mature trees with small, medium and large hollows. Approximate tree height 10-15 m. Moderate potential as roost – very open. Turbine 25.	Yes	

Boco Rock Wind Farm

HA ID	Comments	Potential roost site?	Photo
5	Field: Scattered trees at easter ridge tip, separated from woodland described above by ~100m. Not suitable roost as due to canopy separation and distance from woodland. Approximate tree height 10- 15 m. Turbine 25.	No	
6	Desktop: Scattered trees, not suitable roost. Near turbine 54.	No	Refer to maps in Appendix D
7	Desktop: Scattered trees, not suitable roost.	No	Refer to maps in Appendix D
8	Desktop: Scattered trees, not suitable roost. Near turbine 3.	No	Refer to maps in Appendix D
9	Desktop: Scattered trees, not suitable roost. Near turbine 1.	No	Refer to maps in Appendix D

Evening roost survey

Evening roost surveys were undertaken at two of the potential roost sites: HA 4 (near turbine 25) and HA 3 (near Turbine 45). There were no White-throated Needletail detected during the evening roost survey from November 2023 to April 2024. Below are the results for the White-throated Needletail roost surveys (Table 3-3).

Table 3-3 White-throated Needletail Evening Roost Survey Results

Boco Rock Wind Farm

Date	Turbine	HA ID	Habitat	Time	Observations	Weather
22/11/23	T25	4	Grove of E. viminalis	1830- 2000	No White-throated Needletails	Mild, partly cloudy, windy
22/12/23	T45	3	Open woodland	1830- 2000	No White-throated Needletails	Cool, overcast, light wind
5/1/24	T25	4	Grove of E. viminalis	1830- 2000	No White-throated Needletails	Mild, overcast, windy.
15/2/24	T45	3	Open woodland	1830- 2000	No White-throated Needletails	Mild, overcast, windy
28/3/24	T25	4	Grove of E. viminalis	1830- 2000	No White-throated Needletails	Warm, clear, windy
27/4/24	T45	3	Open woodland	1730- 1900	No White-throated Needletails	Cold, overcast, light wind

Sky scanning

More than twenty records of White-throated Needletails were seen opportunistically in January 2024, flying ahead of a weather event (refer to Table 3-4 below).

Table 3-4 Opportunistic White-throated Needletail records at BRWF (November 2023-April 2024)

Date	Common Name	Count	Location	Easting	Northing	Notes
3/1/2024	White- throated Needletail	20+	Near T42	687904	5949250	Flock of 20 + birds scattered over a large area and flying in an easterly direction

3.2.2. Wedge-tailed Eagle and Nankeen Kestrel

Nesting survey

A known Wedge-tailed Eagle nest is located between Turbines 58 and 65; this has not been active during the current reporting period. One additional raptor nest was found during surveys between November 2023 and April 2024; an old Nankeen Kestrel nest (inactive) (Table 3-5).

Table 3-5 Nesting surveys for Wedge-Tailed Eagle and Nankeen Kestrel at BRWF (November 2023-April 2024)

Boco Rock Wind Farm

Date	Location (nearest turbine)	Habitat	Time	Observations
22/11/23	42,43,45	Open woodland	1200-1400	Old Nankeen Kestrel nest
23/12/23	35, 37	Open woodland	900-1100	No raptor nests found
23/12/23	East of 61, 65, 66	Isolated snow gums in grassland (including stags)	1130-1400	No raptor nests found
23/12/23	Between 58 and 65	Woodland	1400-1430	Known Wedge-tailed Eagle nest inactive
6/1/24	Between 57 and 56	Isolated snow gums in grassland (including stags)	900-1000	No raptor nests found
6/1/24	25	Grove of E. viminalis	1030-1200	No raptor nests found
6/1/24	6, 5	Isolated snow gums in grassland (including stags)	1230-1400	No raptor nests found
16/2/24	4, 3, 2A	Isolated snow gums in grassland (including stags)	900-1130	No raptor nests found
16/2/24	42,43,45	Open woodland	1200-1400	No raptor nests found
29/3/24	East of 61, 65, 66	Isolated snow gums in grassland (including stags)	900-1130	No raptor nests found
29/3/24	Between 57 and 56	Isolated snow gums in grassland (including stags)	1200-1300	No raptor nests found
30/4/24	6, 5, 4, 3, 2A	Isolated snow gums in grassland (including stags)	900-1300	No raptor nests found

Site use survey

During surveys undertaken from November 2023 to April 2024, the following species were observed opportunistically during site use surveys (refer to Table 3-6):

- Nankeen Kestrel (20)
- Wedge-tailed Eagle (6)

Boco Rock Wind Farm

Table 3-6 Wedge-Tailed Eagle and Nankeen Kestrel records during site use survey (November 2023 – April 2024)

Date	Common Name	Count	Location	Easting	Northing
21/11/2023	Wedge-tailed Eagle	2	East of T42	688264	5949085
21/11/2023	Nankeen Kestrel	1	T42	687967	5949197
22/11/2023	Nankeen Kestrel	1	Front gate	686583	5949370
23/11/2023	Nankeen Kestrel	1	Near T44	688546	5949500
23/11/2023	Nankeen Kestrel	1	Т01	685569	5940719
19/12/2023	Nankeen Kestrel	1	Between T55 and T56	691384	5951373
21/12/2023	Nankeen Kestrel	1	T16	686006	5944783
21/12/2023	Wedge-tailed Eagle	2	Т22	685863	5946516
21/12/2023	Nankeen Kestrel	1	Gate to T25	687087	5947147
22/12/2023	Nankeen Kestrel	1	Т02	685089	5941353
3/1/2024	Nankeen Kestrel	1	Near front gate	686584	5949461
3/1/2024	Wedge-tailed Eagle	1	Near T42	688178	5949189
4/1/2024	Nankeen Kestrel	1	Between T30 and T26	686493	5947515
4/1/2024	Nankeen Kestrel	1	Near T25	687281	5947062
5/1/2024	Nankeen Kestrel	1	Near T04	685241	5941675
12/2/2024	Nankeen Kestrel	1	Near T52	691084	5953939
13/2/2024	Nankeen Kestrel	1	Near T2A	685547	5940992
26/3/2024	Wedge-tailed Eagle	1	Near T43	688549	5949093
26/3/2024	Nankeen Kestrel	1	T45	689096	5948911

Н

Boco Rock Wind Farm

Date	Common Name	Count	Location	Easting	Northing
28/3/2024	Nankeen Kestrel	1	Gate to T5	685308	5941995
27/4/2024	Nankeen Kestrel	1	Т52	691024	5953852
27/4/2024	Nankeen Kestrel	1	T42	687933	5949168
28/4/2024	Nankeen Kestrel	1	Т32	686414	5948056
28/4/2024	Nankeen Kestrel	1	Т16	685977	5944702

4. Incidental observations

One threatened species was observed opportunistically during the November 2023 to April 2024 surveys:

• Flame Robin Petroica phoenicea – Vulnerable BC Act

Flame Robins were last recorded at BRWF in May 2019 (one individual). Historically (January 2015 - October 2023), 11 sightings have been recorded at BRWF. The majority of records occurred during the 2016 bird utilisation surveys (eight sightings).

5. Impact triggers and response management

5.1. Impact triggers

As detailed in Section 6 of the BBAMP V2.0 (2023),

CoA 3.3 c) requires a:

'decision making framework that sets out specific actions and when they may be required to be implemented to reduce any impacts on bird and bat populations that have been identified as a result of the monitoring.'

Section 6 of the BBAMP sets out mortality events that would require Agency notification and/or consultation along with impact triggers and response management. Section 6.1 impact triggers relate to mortality surveys with findings of threatened species generally, and Large Bent-wing Bat, Grey-headed Flying-fox and White-throated Needletail specifically. Section 6.2 impact triggers relate to non-threatened species. From these sections, three initial trigger types are shown in Table 5-1 along with their activation status during the November 2023 to April 2024 reporting period.

No impact triggers were activated.

Impact trigger title	Description and location in BBAMP	Status
A carcass of a threatened species	One or more carcasses. S6.1.1 – Table 6.1	Not activated
A carcass of a non-threatened raptor	Three or more of the same species in three consecutive months S6.2.1 – Table 6.4	Not activated
Other non-threatened species	10 or more carcasses in two consecutive months at the same turbine S6.2.1 – Table 6.4	Not activated

Table 5-1 Status of impact triggers during November 2023 to April 2024 season

5.2. Mitigation and adaptive management

Mitigation measures are to be implemented in response to triggers to reduce impacts on bird and microbats. No impact triggers were activated in the reporting period and no mitigation measures were required.

5.2.1. Reducing carcass search effort

BBAMP V2.0, commencing in November 2023, aims to reduce survey effort while maintaining effective monitoring of bird and bat mortality. Despite the intention to decrease effort, the total search area increased from 63.9 ha under BBAMP V1.3 to 81 ha under BBAMP V2.0, which was expected to result in higher carcass finds (and therefore mortality estimates). As discussed, *fewer* carcass finds have led to higher mortality estimates.

Under BBAMP V2.0 if, after the first year of monitoring, results indicate a low risk to local avifauna (as outlined in the *Summary Report*), the survey effort will be reviewed and potentially reduced. Clear conclusions cannot be drawn by comparison of mortality estimates for the November 2023 – April 2024 reporting period with previous years. Further survey is required to determine whether the new monitoring methods (notably the increased search radius) provide a substantially different view regarding the risk posed to local avifauna compared to results of 2015-2023. The next biennial report (reporting November 2024 – April 2026) will review the survey effort.

6. Conclusion

This *Monitoring Results November 2023 - April 2024* report fulfills reporting requirements under BBAMP V2.0 (NGH 2023) for the interim period November 2023 to April 2024. Monthly mortality surveys were undertaken at 18 of 67 turbines out to 120m² radius from the turbine, with a total of

Boco Rock Wind Farm

96 searches over six months. Four carcasses of common species were found comprising three birds and one bat. No waterbirds, raptors or threatened species were found during mortality surveys. Search results are consistent with previous years.

The median mortality estimates are 32 bats and 73 birds lost over the 6 month period. This is likely to be within the higher end of the range annual mortality estimates derived in previous years. There are several limitation to comparing mortality estimates for previous years with the November 2023 – April 2024 estimates. Firstly, the time period for the estimation is different (six months for the current period compared to 12). Secondly, the survey season for this estimate is intentionally biased toward the periods of higher site activity and mortality, whereas the annual estimates are for the whole year. Thirdly, and most substantially, the relative chance of finding a bird or bat carcass is lower under the BBAMP v2.0 methods. This leads to higher uncertainty and therefore a higher mortality estimate per carcass found.

Targeted bird surveys were undertaken for White-throated Needletail, Wedge-tailed Eagle and Nankeen Kestrel in the form of habitat surveys and opportunistic sky scanning. Three areas with potential White-throated Needletail roost habitat were identified and two were surveyed monthly between November 2023 and April 2024. Eleven raptor stick nest surveys were undertaken to map nests across BRWF; no active nests were found.

Sky scanning identified one flock of around 20 White-throated Needletail in January 2024 associated with a frontal system. Raptors were recorded every month of survey for a total of 20 Nankeen Kestrel observations and six Wedge-tailed Eagles. Flame Robin, a NSW vulnerable species, was observed opportunistically, having not been recorded at BRWF since 2019.

Impact triggers, which pertain to mortality survey results, were not activated during the reporting period therefore mitigation measures and adaptive management was not required. Further survey is required to determine whether the new monitoring methods provide substantially different results regarding the risk posed to local avifauna compared to results of 2015-2023.

Bird and Bat Adaptive Management Plan –Results November 2023 to April 2024 NGH Boco Rock Wind Farm

7. References

- DoE. (2015). *Referral guideline for 14 birds listed as migratory.* Canberra: Department of the Environment, Australian Government.
- Jenness, J. (2006, September 15). *Topographic Position Index (tpi_jen.avx) extension for ArcView 3.x, v. 1.2.* Retrieved from Jenness Enterprises: http://www.jennessent.com/arcview/tpi.htm

Appendix A Results: Mortality Surveys

November 2023 – April 2024 Detailed mortality results

Quarter	Month	Turbine ID:	Date	Common Name	Species:	No.	Threatened (Yes/No)	Easting	Northing	Notes:
4th	Dec	39	20/12/2023	Eurasian Skylark	Alauda arvensis	1	No	688214	5950001	Body intact. 1 day old. Lower abdomen swollen with fluid. Male.
1st	Jan	28	1/4/2024	Common Starling	Sturnus vulgaris	1	No	685470	5946863	Intact carcass, not scavenged and no sign of obvious injury
1st	Jan	1	1/5/2024	Australian Magpie	Cracticus tibicen	1	No	685841	5943653	Dry carcass and flattened from being on the ground for some time. Eyes missing. Difficult to determine injury as the carcass was quite stiff.
1st	Mar	64	3/25/2024	White-striped Freetail Bat	Austronomus australis	1	No	692299	5954181	Left forearm broken. Lower abdomen swollen.

Appendix B Results: Bird Surveys

Opportunistic Records (November 2023 - April 2024)

Date	Month	Common Name	Native	Count	Observatio n	Site	Easting	Northing	Distance	Height	Raptor?	Notes
21/11/2023	Nov	Wedge-tailed Eagle	Yes	2	Observed	East of T42	688264	5949085	285	100	Yes	Soaring
21/11/2023	Nov	Nankeen Kestrel	Yes	1	Observed	T42	687967	5949197	0	10	Yes	Perched in tree
22/11/2023	Nov	Nankeen Kestrel	Yes	1	Observed	Front gate	686583	5949370	0	10	Yes	Hovering
23/11/2023	Nov	Nankeen Kestrel	Yes	1	Observed	Near T44	688546	5949500	100	12	Yes	Hovering
23/11/2023	Nov	Nankeen Kestrel	Yes	1	Observed	T01	685569	5940719	40	10	Yes	Hovering
19/12/2023	Dec	Nankeen Kestrel	Yes	1	Observed	Between T55 and T56	691384	5951373	100	20	Yes	Hovering
21/12/2023	Dec	Nankeen Kestrel	Yes	1	Observed	T16	686006	5944783	80	15	Yes	Hovering

Date	Month	Common Name	Native	Count	Observatio n	Site	Easting	Northing	Distance	Height	Raptor?	Notes
21/12/2023	Dec	Wedge-tailed Eagle	Yes	2	Observed	T22	685863	5946516	280	60	Yes	Soaring
21/12/2023	Dec	Nankeen Kestrel	Yes	1	Observed	Gate to T25	687087	5947147		10	Yes	Hovering
22/12/2023	Dec	Nankeen Kestrel	Yes	1	Observed	T02	685089	5941353	40	15	Yes	Hovering
3/1/2024	Jan	Nankeen Kestrel	Yes	1	Observed	Near front gate	686584	5949461	NA	15	Yes	Hovering
3/1/2024	Jan	White-throated Needletail	Yes	20+	Observed	Near T42	687904	5949250	150	200	No	Flock of 20 + birds scattered over a large area and flying in an easterly direction
3/1/2024	Jan	Wedge-tailed Eagle	Yes	1	Observed	Near T42	688178	5949189	250	100	Yes	Soaring
4/1/2024	Jan	Nankeen Kestrel	Yes	1	Observed	Roughly halfway between T30 and T26	686493	5947515	NA	15	Yes	Hovering

Date	Month	Common Name	Native	Count	Observatio n	Site	Easting	Northing	Distance	Height	Raptor?	Notes	
4/1/2024	Jan	Nankeen Kestrel	Yes	1	Observed	Near T25	687281	5947062	100	20	Yes	Hovering	
5/1/2024	Jan	Nankeen Kestrel	Yes	1	Observed	Near T04	685241	5941675	80	7	Yes	In tree	
12/2/2024	Feb	Nankeen Kestrel	Yes	1	Observed	Near T52	691084	5953939	40	15	Yes	Hovering	
13/2/2024	Feb	Nankeen Kestrel	Yes	1	Observed	Near T2A	685547	5940992	120	15	Yes	Hovering	
26/3/2024	Mar	Wedge-tailed Eagle	Yes	1	Observed	Near T43	688549	5949093	200	100	Yes	Riding thermal	
26/3/2024	Mar	Nankeen Kestrel	Yes	1	Observed	T45	689096	5948911	60	10	Yes	In tree	
28/3/2024	Mar	Nankeen Kestrel	Yes	1	Observed	Gate to T5	685308	5941995	0	20	Yes	Hovering	
27/4/2024	Apr	Nankeen Kestrel	Yes	1	Observed	T52	691024	5953852	20	20	Yes	Hovering	

Date	Month	Common Name	Native	Count	Observatio n	Site	Easting	Northing	Distance	Height	Raptor?	Notes
27/4/2024	Apr	Nankeen Kestrel	Yes	1	Observed	T42	687933	5949168	50	20	Yes	Hovering
28/4/2024	Apr	Nankeen Kestrel	Yes	1	Observed	T32	686414	5948056	40	25	Yes	Hovering
28/4/2024	Apr	Nankeen Kestrel	Yes	1	Observed	T16	685977	5944702	30	15	Yes	Hovering
28/4/2024	Apr	Flame Robin	Yes	1	Observed	Between T02 and T02A	685286	5941194	10	1	No	Perched on rockwall

Appendix C Symbolix mortality estimate report

An excerpt follows from the Symbolix mortality estimate report pertaining to the period November 2023 – April 2024.

4 Mortality estimate

With estimates for scavenge loss, searcher efficiency, and survey coverage, we then converted the number of bat and bird carcasses detected into estimates of overall mortality at Boco Rock Wind Farm.

The mortality estimation is done via a Monte Carlo algorithm. We used 15000 simulations, with the survey design simulated each time. Random numbers of virtual mortalities were simulated, along with the scavenge time and searcher efficiency (based on the measured confidence intervals). The proportion of virtual carcasses that were "found" was recorded for each simulation. Finally, those trials that had the same outcome as the reported survey detections were collated, and the initial conditions (i.e. how many true losses there were) reported on.

The model assumptions are listed below:

- There were 67 turbines on site available to strike bats and birds.
- Search frequency for each turbine was taken from the list of actual survey dates.
- Bats and birds are on-site at all times during this period.
- Bats and birds that are struck are immediately replaced (i.e. strikes one day do not affect the chance of strikes the next).
- We have used the standard practice of assuming that all carcasses and all feather spots (regardless of size or composition) are attributable to the wind turbines.
- Finds are random and independent, and not clustered with other finds.
- Until October 2023, we assume there was equal chance of any turbine being involved in a collision / mortality. Post October 2023, we assume that within strata (higher and lower risk), this assumption holds but not between strata.
- We took scavenge loss and searcher efficiency rates as outlined above.
- We assumed an exponential scavenge shape.
- We assumed coverage factors as summarised above.

We ran a number of mortality estimates on bats and birds:

- Year 9: January 2023 to October 2023 (inclusive). This is the last of the survey under the old methods.
- Year 9: November 2023 to April 2024 (inclusive). This is the first six months of survey under the new methods.
- Cumulative years 1-9, January 2015 to October 2023. We have not run cumulative estimates past this point, due to the step change in survey design in November 2023.

4.1 Bats

In Year 9, Jan 23-Oct 23, a total of two bats were found. The resulting (median) estimate of total mortality is 15 individuals lost over the ten months.

In Nov 23-Apr 24, zero bats were found in both the higher and lower risk strata. The resulting (median) estimate of total mortality is 57 individuals lost over the six months.

Finally, we present the cumulative Y1-9 estimate (Jan 15 to Oct 23). Over this time period, a total of 74 bats were found. The resulting (median) estimate of total mortality is 465 individuals lost over the nine years.

These results are presented in Table 8 and Figure 4, to show the confidence on the mortality estimate.

Analysis Period	0%	50% (median)	90%	95%	99%
Y9: Jan 23-Oct 23	2	15	31	35	51
Y9: Nov 23-Apr 24	2	57	153	190	307
Y1-9: Cumulative Jan 15-Oct 23	301	465	580	614	667

Figure 4: Histograms of the total losses distributions (bats). The black solid lines show the median.

4.2 Birds

In Year 9, Jan 23-Oct 23, a total of six birds were found. The resulting (median) estimate of total mortality is 40 individuals lost over the ten months.

In Nov 23-Apr 24, two birds were found in both the higher and lower risk strata. The resulting (median) estimate of total mortality is 122 individuals lost over the six months.

Finally, we present the cumulative Y1-9 estimate (Jan 15 to Oct 23). Over this time period, a total of 63 birds were found. The resulting (median) estimate of total mortality is 395 individuals lost over the nine years.

These results are presented in Table 9 and Figure 5, to show the confidence on the mortality estimate.

Analysis Period	0%	50% (median)	90%	95%	99%
Y9: Jan 23-Oct 23	12	55	91	104	119
Y9: Nov 23-Apr 24	7	122	223	267	379
Y1-9: Cumulative Jan 15-Oct 23	358	564	723	767	911

Table 9: Percentiles of the bird losses distributions.

Figure 5: Histograms of the total losses distributions (birds). The black solid lines show the median.